A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marine Gas Oil (MGO) and Bioethanol (BE100)
2.2. Analysis of Fuel Composition and Physical Properties
2.3. Design and Fabrication of a 1-Ton Combustion Chamber
2.4. Experimental Conditions and Methods
3. Results
3.1. Exhaust Gas Emissions
3.2. Exhaust Gas Temperature
3.3. Combustion Efficiency
4. Statistical Analysis
One-Way Analysis of Variance (ANOVA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.W.; Lee, T.H.; Ryu, Y.H. Thermo-Gravimetric Analysis of MGO-Bioethanol Blended Fuel Oil. J. Korean Soc. Mech. Technol. 2024, 26, 1187–1192. [Google Scholar]
- Kim, J.W. The Effects of MGO-Bioethanol Blended Oil Using Standard Combustion Chamber on Exhaust Emissions Characteristics; Pukyoung National University: Busan, Republic of Korea, 2024. [Google Scholar]
- Lee, T.H.; Lee, S.H.; Lee, J.K. Exhaust gas emission improvements of water/bunker C oil-emulsified fuel applied to marine boiler. J. Mar. Sci. Eng. 2021, 9, 477. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel: A Realistic Fuel Alternative for Diesel Engines; Springer: London, UK, 2008. [Google Scholar]
- Force, C.A.T. Prevention of Air Pollution from Ships: Reducing Shipping Emissions of Air Pollution-Feasible and Cost-Effective Options Submitted by Friends of the Earth International to the Marine Environment Protection Committee; IMO: London, UK, 2005. [Google Scholar]
- Gritsenko, D. Regulating GHG Emissions from shipping: Local, global or polycentric approach? Mar. Policy 2017, 84, 130–133. [Google Scholar] [CrossRef]
- Lee, S.B.; Cho, M.I.; Kang, S.G.; Huh, C. Necessity and Research Challenges of Onboard Carbon Capture Technology in Achieving the IMO’s Goal of Reducing GHG. J. Korean Soc. Mar. Environ. Energy 2023, 26, 336–348. [Google Scholar] [CrossRef]
- Choi, J.S.; Han, S.G.; Choi, J.H.; Park, S.K.; Park, R.S.; Kim, D.H. A Study on Characteristics of Exhaust Gas Emissions of Water-Bunker Oil Mixed by Homogenizer. J. Korean Soc. Mar. Environ. Saf. 2013, 19, 518–524. [Google Scholar] [CrossRef]
- Lee, T.H.; Ryu, Y.H. A Study on mixing properties of coffee ground-fuel for improvement of air pollution from ships. J. Korean Soc. Mech. Technol. 2021, 23, 181–186. [Google Scholar]
- Ryu, Y.H.; Dan, T. Investigation on the Effects of Dimethyl Ether Blending to Bunker Oil for Marine Diesel Engine Use; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- IMO. Alternative Fuels-Scalability and Sustainability, Future Fuels and Technology for Lowand Zero-Carbon Shipping Project in Website; IMO: London, UK, 2024. [Google Scholar]
- Kim, J.W.; Lee, T.H.; Park, J.U. Manufacturing Method for MGO-Bioethanol Mixed Fuel Oil. J. Korean Soc. Mech. Technol. 2024, 26, 293–298. [Google Scholar]
- Lee, T.H.; Kang, I.S. Small Combustion Chamber for Marine Fuel Oil and Analysis of Exhaust Gas Characteristics of Marine Gas Oil. J. Mar. Sci. Eng. 2023, 11, 609. [Google Scholar] [CrossRef]
- Kim, J.W.; Park, J.U.; Lee, T.H.; Kang, I.S. Characteristics of exhaust emissions from MGO–bioethanol fuel blend using a combustion chamber. Adv. Mech. Eng. 2024, 16, 16878132241298338. [Google Scholar] [CrossRef]
- Bae, S.J. Combustion and emission characteristics of a diesel engine fueled with diesel-bioethanol blends according to engine speed. J. Korean. Soc. Mech. Technol. 2022, 24, 572–577. [Google Scholar]
- Bae, S.J. A study on the combustion and emission characteristics of diesel-bioethanol blends in compressionignition engines according to idle operating conditions. J. Korean. Soc. Mech. Technol. 2022, 24, 706–711. [Google Scholar]
- Ha, S.Y. A Study on Combustion and Exhaust Emissions Characteristics in a Spark Ignition (SI) Engine with Bioethanol Fuel; Hanyang University: Busan, Republic of Korea, 2010. [Google Scholar]
- Poulopoulos, S.G.; Philippopoulos, C.J. The effect of adding oxygenated compounds to gasoline on automotive exhaust emissions. J. Eng. Gas Turbines Power 2003, 125, 344–350. [Google Scholar] [CrossRef]
- Jeuland, N.; Montagne, X.; Gautrot, X. Potentiality of ethanol as a fuel for dedicated engine. Oil Gas Sci. Technol. 2004, 59, 559–570. [Google Scholar] [CrossRef]
- ISO 8217:2017; ISO 8217—Petroleum Products—Fuels (Class F)—Specifications of Marine Fuels. ISO: Geneva, Switzerland, 2017.
- Legislative Bureau. Oil and Alternative Fuel Business Act; National Legal Information Center: Sejong, Republic of Korea, 2019.
- Kim, J.W.; Lee, T.H.; Park, J.U. Development of a Lap scale 1-ton Standard Combustion Chamber. J. Korean Soc. Mech. Technol. 2024, 26, 371–376. [Google Scholar]
- Kang, M.K. A Study on the Exhaust Characteristics of Diesel Engine Emissions and the Feasibility of Using Waste Vinyl Pyrolysis Oil as Marine Fuel; National Korea Maritime & Ocean University: Busan, Republic of Korea, 2024. [Google Scholar]
- Lee, J.H.; Lee, S.Y. Current status and prospects of bioalcohol. News Inf. Chem. Eng. 2018, 36, 673–679. [Google Scholar]
- Ra, C.H.; Sunwoo, I.S.; Kim, S.K. Bioethanol Production from Macroalgal Biomass. J. Life. Sci. 2016, 26, 976–982. [Google Scholar] [CrossRef]
- Lee, S.M.; Choi, I.S.; Kim, S.K.; Lee, J.H. Production for bio-ethanol from brown algae by enzymic hydrolysis. J. KSBB 2009, 24, 483–488. [Google Scholar]
- Badal, C.S.; Michael, C.A. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzym. Microb. Technol. 2007, 41, 528–532. [Google Scholar]
- Hwang, I.H.; Doe, J.W.; Kang, H.K.; Sung, S.R.; Ha, J.H.; Na, B.K. Study on the Density and Volume Change Property of Petroleum Products according to Temperature Variation. J. Oil Appl. Sci. 2017, 34, 1112–1120. [Google Scholar]
- Sattarin, M.; Modarresi, H.; Bayat, M.; Teymori, M. New Viscosity Correlations for Dead Crude Oils. Pet. Coal 2007, 49, 33–39. [Google Scholar]
- K-petro. Composion Analysis Test Report of TSC2024-0118E; K-petro Co., Ltd.: Sungnam, Republic of Korea, 2024. [Google Scholar]
- K-petro. Composion Analysis Test Report of TSC2025-0024E; K-petro Co., Ltd.: Sungnam, Republic of Korea, 2025. [Google Scholar]
- Lee, T.H.; Kim, J.W.; Ryu, Y.H. Exhaust Emission Characterisitics of MGO-Biodiesel Mixed Oil. J. Korean Soc. Mech. Technol. 2024, 26, 660–667. [Google Scholar]
- Lee, T.H.; Kang, I.S. Development of 30 liter small boiler for testing marine fuel oil. J. Korean Soc. Mech. Technol. 2023, 25, 223–228. [Google Scholar]
- TESTO. Flue Gas Analyzer Instruction Manual on Testo-340; Testo Co., Ltd.: West Chester, PA, USA, 2016. [Google Scholar]
- No, K.S. The Proper Methods of Statistical Analysis for Dissertation; Hanbit Academy Inc.: Seoul, Repubic of Korea, 2019. [Google Scholar]
List | Standard Method [20] | MGO | Diesel | Kerosene | BE100 | Unit |
---|---|---|---|---|---|---|
Lower calorific value (LHV) | ASTM D240-19 | 43,030 | 42,700 | 43,250 | 24,190 | J/g |
High calorific value (HHV) | ASTM D240-19 | 46.065 | 45.780 | 46.335 | 27.010 | MJ/kg |
Density @ 15 °C | KS M ISO 12185:1996 | 840.8 | 821.2 | 786.7 | 811.5 | Kg/m3 |
Flash point | ASTM D93-20 | 67.5 | 47.5 | 44.0 | Less than 40.0 | °C |
Kinematic viscosity @ 40 °C | KS M ISO 3104:2020 | 3.011 | 2.557 | 1.097 | 1.210 | mm2/s |
Item | List | Specification | Unit |
---|---|---|---|
Combustion Chamber | Type | Square cylinder | - |
Volume | 900 | liter | |
Size | 750 × 750 × 1600 | mm | |
Thickness | 3.2 | t | |
Sight glass | H125 × W250 | mm | |
Funnel | 5K 200A | mm | |
Weight | About 265 | kg | |
Burner Assembly | Model | SGH-10 | - |
Fuel | Diesel, etc. | - | |
Consumption | 4–10 | kg/h | |
Calorific value | Max. 99,000 | kcal/h | |
Weight | 40 | kg | |
Nozzle | Model | 030H6920 | - |
Flow rate | 3.72 | kg/h | |
Angle | 60 | ° | |
Definition point | Max. 10.0 | bar |
Experiment Condition | Values | Unit | |||
---|---|---|---|---|---|
Test Oil | MGO M | Diesel D | Kerosene K | BE100 BE | % |
Chamber Pressure | −0.000002 | −0.000008 | −0.000047 | 0.00021 | bar |
Chamber Temperature | 434.73 | 418.16 | 404.37 | 252.41 | °C |
Fuel Injection Pressure | 9.27 | 9.19 | 9.02 | 9.13 | bar |
Fuel Oil Temperature | 14.18 | 13.98 | 15.33 | 12.03 | °C |
Supply Air Temperature | 23.5 | 11.1 | 16.6 | 11.9 | °C |
Parameter | Range | Accuracy (%) | Resolution | Unit |
---|---|---|---|---|
O2 | 0–25 | ±0.20 | 0.01 | % |
CO2 | 0–CO2max | ±0.20 | 0.10 | % |
NOx | 0–4000 | ±5–10 | 1.00 | ppm |
SO2 | 0–5000 | ±10 | 1.00 | ppm |
Temperature | −40–1200 | ±0.50 | 0.10 | °C |
Item | Fuel Oil | One-Way ANOVA Analysis Results | |||||
---|---|---|---|---|---|---|---|
N | M | SD | F | p | Tukey | ||
Exhaust Gas Temperature | MGO M | 300 | 367.113 | 1.434 | 2,342,163.674 | 0.000 *** | M > D > K > BE |
Diesel D | 300 | 335.366 | 1.008 | ||||
Kerosene K | 300 | 319.703 | 1.223 | ||||
BE100 BE | 300 | 203.239 | 0.570 | ||||
O2 | MGO M | 300 | 8.034 | 0.081 | 3,026,252.487 | 0.000 *** | M < D < K < BE |
Diesel D | 300 | 10.538 | 0.045 | ||||
Kerosene K | 300 | 11.976 | 0.030 | ||||
BE100 BE | 300 | 16.251 | 0.019 | ||||
CO2 | MGO M | 300 | 9.322 | 0.062 | 2,939,641.218 | 0.000 *** | M > D > K > BE |
Diesel D | 300 | 7.524 | 0.032 | ||||
Kerosene K | 300 | 6.531 | 0.021 | ||||
BE100 BE | 300 | 3.420 | 0.013 | ||||
NOx | MGO M | 300 | 34.353 | 0.486 | 359,719.804 | 0.000 *** | M > D > K > BE |
Diesel D | 300 | 25.670 | 0.471 | ||||
Kerosene K | 300 | 24.477 | 0.500 | ||||
BE100 BE | 300 | 1.850 | 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-W.; Lee, T.-H. A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil. J. Mar. Sci. Eng. 2025, 13, 433. https://doi.org/10.3390/jmse13030433
Kim J-W, Lee T-H. A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil. Journal of Marine Science and Engineering. 2025; 13(3):433. https://doi.org/10.3390/jmse13030433
Chicago/Turabian StyleKim, Ju-Wan, and Tae-Ho Lee. 2025. "A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil" Journal of Marine Science and Engineering 13, no. 3: 433. https://doi.org/10.3390/jmse13030433
APA StyleKim, J.-W., & Lee, T.-H. (2025). A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil. Journal of Marine Science and Engineering, 13(3), 433. https://doi.org/10.3390/jmse13030433