Evaluation of Air–Sea Flux Products Based on Observations in the Northern South China Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. In Situ Observations
2.2. Reanalysis Products
2.3. Carbon Flux Products
2.4. Data Processing and Evaluation Metrics
3. Results
3.1. Comparison of Meteorological Variables
3.2. Comparison of Heat and Momentum Fluxes
3.3. Comparison of CO2 Fluxes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bunsen, F.; Nissen, C.; Hauck, J. The Impact of Recent Climate Change on the Global Ocean Carbon Sink. Geophys. Res. Lett. 2024, 51, e2023GL107030. [Google Scholar] [CrossRef]
- Yu, L. Global Air–Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Annu. Rev. Mar. Sci. 2019, 11, 227–248. [Google Scholar] [CrossRef]
- Dai, M.; Su, J.; Zhao, Y.; Hofmann, E.E.; Cao, Z.; Cai, W.J.; Gan, J.; Lacroix, F.; Laruelle, G.G.; Meng, F.; et al. Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends. Annu. Rev. Earth Planet. Sci. 2022, 50, 593–626. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Gao, H. Spatiotemporal Evolution of Air–Sea CO2 Flux in the South China Sea and Its Response to Environmental Factors. Remote Sens. 2024, 16, 4724. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Huang, J.; Zeng, L.; Huang, F. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. Oceans 2017, 122, 5088–5104. [Google Scholar] [CrossRef]
- Luo, J.; Gao, Z.; Liu, K.; Song, X.; Wu, S.; Fang, Z. Evaluation of ERA-Interim and MERRA Sensible Heat Flux and Latent Heat Flux along Coast of China. Adv. MeT S&T 2018, 8, 6–14. (In Chinese) [Google Scholar] [CrossRef]
- Luo, S.; Liu, S.; Zhang, T.; Cai, D.; Zhao, T.; Han, J. Applicability Analysis of Three Reanalysis Data in Xisha Sea Area. Adv. Mar. Sci. 2022, 9, 96–107. (In Chinese) [Google Scholar] [CrossRef]
- Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Clayson, C.A.; Fairall, C.W.; Farrar, J.T.; Gille, S.T.; et al. Air-Sea Fluxes With a Focus on Heat and Momentum. Front. Mar. Sci. 2019, 6, 430. [Google Scholar] [CrossRef]
- Tang, R.; Wang, Y.; Jiang, Y.; Liu, M.; Peng, Z.; Hu, Y.; Huang, L.; Li, Z. A review of global products of air-sea turbulent heat flux: Accuracy, mean, variability, and trend. Earth-Sci. Rev. 2024, 249, 104662. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Shi, R.; Chen, J.; He, Y.; Wang, D.; Xie, Q. Evaluation of OAFlux datasets based on in situ air-sea flux tower observations over Yongxing Island in 2016. Atmos. Meas. Tech. 2018, 11, 6091–6106. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, F.; Wang, X.; Wang, D.; Gulev, S.K. Cool Skin Effect and its Impact on the Computation of the Latent Heat Flux in the South China Sea. J. Geophys. Res. Oceans 2021, 126, 2020JC016498. [Google Scholar] [CrossRef]
- Moura, R.; Casagrande, F.; de Souza, R.B. An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean. Atmosphere 2025, 16, 402. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Hamdi, R.; Ma, X.; Termonia, P.; De Maeyer, P.; Chen, A. Bridging the Gap in Carbon Cycle Studies: Meteorological Station-Based Carbon Flux Dataset as a Complement to EC Towers. Agric. For. Meteorol. 2025, 362, 110397. [Google Scholar] [CrossRef]
- Small, R.J.; Bryan, F.O.; Bishop, S.P.; Tomas, R.A. Air–Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses: What Drives Their Variability? J. Clim. 2019, 32, 2397–2421. [Google Scholar] [CrossRef]
- Anna, S. Turbulent fluxes of momentum and heat over land in the High-Arctic summer: The influence of observation techniques. Polar Res. 2014, 33, 21567. [Google Scholar] [CrossRef]
- Su, W.; Wang, B.; Chen, H.; Lin, Z.; Zheng, X.; Chen, S. A new global carbon flux estimation methodology by assimilation of both in situ and satellite CO2 observations. npj Clim. Atmos. Sci. 2024, 7, 1–10. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, X.; Che, T.; Li, J. Global carbon flux dataset generated by fusing remote sensing and multiple flux networks observation. Sci. Data 2025, 12, 1359. [Google Scholar] [CrossRef]
- Sivam, S.; Zhang, C.; Zhang, D.; Yu, L.; Dressel, I. Surface Latent and Sensible Heat Fluxes over the Pacific Sub-Arctic Ocean from Saildrone Observations and Three Global Reanalysis Products. Front. Mar. Sci. 2024, 11, 1431718. [Google Scholar] [CrossRef]
- Tong, J.; Song, X.; Jiang, W.; Cai, W. Enhanced Wintertime Surface Heat Flux Feedback in the North Pacific Over Six Recent Decades. Geophys. Res. Lett. 2025, 52, e2025GL116861. [Google Scholar] [CrossRef]
- Bakker, D.C.E.; Alin, S.R.; Bates, N.; Becker, M.; Gkritzalis, T.; Jones, S.D.; Kozyr, A.; Lauvset, S.K.; Metzl, N.; Nakaoka, S.i.; et al. Surface Ocean CO2 Atlas Database Version 2024 (SOCATv2024) (NCEI Accession 0293257). NOAA National Centers for Environmental Information. Dataset. 2024. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0293257 (accessed on 12 January 2025).
- Jin, Z.; Tian, X.; Wang, Y.; Zhang, H.; Zhao, M.; Wang, T.; Ding, J.; Piao, S. A global surface CO2 flux dataset (2015–2022) inferred from OCO-2 retrievals using the GONGGA inversion system. Earth Syst. Sci. Data 2024, 16, 2857–2876. [Google Scholar] [CrossRef]
- Dai, M.; Meng, F. Carbon cycle in the South China Sea: Flux, controls and global implications. Sci. Technol. Rev. 2020, 38, 30–34. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Y.; Bakker, D.C.E.; Bell, T.G.; Huang, B.; Landschützer, P.; Liss, P.S.; Yang, M. Update on the Temperature Corrections of Global Air-Sea CO2 Flux Estimates. Global Biogeochem. Cycles 2022, 36, e2022GB007360. [Google Scholar] [CrossRef]
- Zhong, W.; Ma, X.; Shi, T.; Ge, H.; Zhang, H.; Gong, W. Reconstruction of Global Ocean Surface pCO2 and Air-Sea CO2 Flux: Based on Multigrained Cascade Forest Model. J. Geophys. Res. Oceans 2025, 130, e2024JC021483. [Google Scholar] [CrossRef]
- Rustogi, P.; Landschützer, P.; Brune, S.; Baehr, J. The Impact of Seasonality on the Annual Air-Sea Carbon Flux and Its Interannual Variability. npj Clim. Atmos. Sci. 2023, 6, 66. [Google Scholar] [CrossRef]
- Jersild, A.; Landschützer, P. A Spatially Explicit Uncertainty Analysis of the Air-Sea CO2 Flux from Observations. Geophys. Res. Lett. 2024, 51, e2023GL106636. [Google Scholar] [CrossRef]
- Cai, D.; Liu, S.; Tong, J.; Zhao, T. Study on sea-air CO2 flux in the South China Sea based on satellite remote sensing. J. Trop. Meteor. 2023, 39, 462–473. (In Chinese) [Google Scholar] [CrossRef]
- Josey, S.A. A Comparison of ECMWF, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic. J. Clim. 2001, 14, 1780–1789. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, F.; Chen, C.; Shi, R.; Chen, J.; Li, D.; He, Y.; Long, Z. A Dataset of Air-sea Fluxes at Xisha Marine Environmental National Observation and Research Station in Hainan from 2016 to 2020. China Sci. Data 2024, 9, 1–9. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Shi, R.; He, Y.; Chen, J.; Wang, X.; Xie, Q. A study of data processing and quality assessment of the eddy convariance system off Yongxing Island. J. Trop. Oceanogr. 2017, 36, 48–59. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Becker, E. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Met. Soc. Jap. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Bakker, D.C.E.; Pfeil, B.; Landa, C.S.; Metzl, N.; O’Brien, K.M.; Olsen, A.; Smith, K.; Cosca, C.; Harasawa, S.; Jones, S.D.; et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 2016, 8, 383–413. [Google Scholar] [CrossRef]
- Fay, A.R.; Munro, D.R.; McKinley, G.A.; Pierrot, D.; Sutherland, S.C.; Sweeney, C.; Wanninkhof, R. Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions. Earth Syst. Sci. Data 2024, 16, 2123–2139. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, T.; Zhang, H.; Wang, Y.; Tian, X. Constraint of satellite CO2 retrieval on the global carbon cycle from a Chinese atmospheric inversion system. Sci. China Earth Sci. 2023, 66, 609–618. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Z. Testing OAFlux Field by Using the Shipborne Heat Flux Measurements. Clim. Environ. Res. 2012, 17, 281–291. (In Chinese) [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The parametrization of surface fluxes in large-scale models under free convection. Q. J. R. Meteorol. Soc. 1995, 121, 255–270. [Google Scholar] [CrossRef]
- Brunke, M.A.; Zeng, X.; Anderson, S. Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res. Oceans 2002, 107, 5-1–5-21. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Smith, S.R.; Hughes, P.J.; Bourassa, M.A. A comparison of nine monthly air–sea flux products. Int. J. Climatol. 2011, 31, 1002–1027. [Google Scholar] [CrossRef]
- Stavroula, B.; Richard C., C.; David I., B.; Elizabeth C., K.; Margaret J., Y. AirSeaFluxCode: Open-source software for calculating turbulent air-sea fluxes from meteorological parameters. Front. Mar. Sci. 2023, 9, 1049168. [Google Scholar] [CrossRef]
- Yu, L.; Weller, R.A. Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005). Bull. Amer. Meteor. Soc. 2007, 88, 527–540. [Google Scholar] [CrossRef]
- Davis, R.E.; Talley, L.D.; Roemmich, D.; Owens, W.B.; Rudnick, D.L.; Toole, J.; Weller, R.; McPhaden, M.J.; Barth, J.A. 100 Years of Progress in Ocean Observing Systems. Meteorol. Monogr. 2019, 59, 3.1–3.46. [Google Scholar] [CrossRef]
- Wu, L.; Cai, Y.; Rutgersson, A. Ocean surface waves impact on global air-sea CO2 flux. Biogeochemistry 2025, 168, 68. [Google Scholar] [CrossRef] [PubMed]








| Metrics | Products | WS | WD | RH | DSR | USR | DLR | ULR | Rn | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| ERA5 | 1.07 | −18.49 | 0.32 | −0.65 | −0.02 | −8.86 | −15.15 | −6.44 | −0.48 | −1.29 | |
| Bias | CFSv2 | 1.12 | −18.27 | 0.05 | −0.34 | −0.24 | 26.11 | −8.92 | −8.64 | −0.62 | 29.53 |
| JRA55 | 1.19 | −17.79 | 0.50 | −0.21 | −0.05 | −22.89 | −16.20 | −6.10 | 2.48 | −16.10 | |
| ERA5 | 1.10 | 19.34 | 0.61 | 0.73 | 0.94 | 13.51 | 15.28 | 6.94 | 3.04 | 8.12 | |
| RMSE | CFSv2 | 1.21 | 19.84 | 0.67 | 0.41 | 1.71 | 33.12 | 9.28 | 9.65 | 4.15 | 34.21 |
| JRA55 | 1.22 | 19.67 | 0.81 | 0.32 | 1.24 | 27.77 | 16.34 | 6.51 | 4.37 | 22.09 | |
| ERA5 | 0.994 | 0.995 | 0.987 | 0.994 | 0.879 | 0.973 | 0.698 | 0.983 | 0.993 | 0.982 | |
| R | CFSv2 | 0.976 | 0.991 | 0.960 | 0.995 | 0.421 | 0.965 | 0.629 | 0.958 | 0.965 | 0.946 |
| JRA55 | 0.990 | 0.989 | 0.963 | 0.994 | 0.881 | 0.937 | 0.618 | 0.986 | 0.977 | 0.913 |
| Metrics | Products | LHF | SHF | TAU |
|---|---|---|---|---|
| ERA5 | 65.96 | −11.41 | −0.066 | |
| Bias | CFSv2 | 53.61 | −13.78 | −0.080 |
| JRA55 | 82.50 | −1.99 | −0.069 | |
| ERA5 | 71.81 | 31.35 | 0.090 | |
| STD | CFSv2 | 72.93 | 32.58 | 0.088 |
| JRA55 | 76.52 | 34.23 | 0.086 |
| Metrics | MCAS | SOCAT | GONGGA |
|---|---|---|---|
| Bias | 0.87 | 1.36 | 0.57 |
| RMSE | 3.70 | 3.02 | 3.28 |
| R | 0.36 | 0.75 | 0.64 |
| Metrics | Products | WS | WD | RH | DSR | USR | DLR | ULR | Rn | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Xisha | 5.74 | 150.16 | 27.80 | 27.88 | 82.75 | 220.16 | 25.84 | 426.62 | 468.70 | 164.90 |
| ERA5 | 6.80 | 132.06 | 28.05 | 27.21 | 82.83 | 211.80 | 10.22 | 419.90 | 466.34 | 155.14 | |
| CFSv2 | 6.84 | 132.33 | 27.75 | 27.51 | 82.59 | 247.44 | 16.05 | 417.77 | 465.96 | 183.21 | |
| JRA55 | 6.92 | 133.00 | 28.22 | 27.68 | 82.67 | 196.79 | 9.07 | 420.33 | 468.99 | 139.07 | |
| STD | Xisha | 3.09 | 70.44 | 2.20 | 2.28 | 4.43 | 74.31 | 7.50 | 16.06 | 14.16 | 56.60 |
| ERA5 | 2.99 | 70.33 | 1.74 | 2.03 | 4.31 | 58.28 | 2.34 | 16.17 | 10.72 | 52.24 | |
| CFSv2 | 3.11 | 69.20 | 1.82 | 2.22 | 3.09 | 79.90 | 5.31 | 18.68 | 11.23 | 66.22 | |
| JRA55 | 3.12 | 73.94 | 1.80 | 2.24 | 4.48 | 60.50 | 2.37 | 15.18 | 11.23 | 55.39 |
| Metrics | Products | LHF | SHF | TAU |
|---|---|---|---|---|
| Mean | Xisha | 83.10 | 27.97 | 0.17 |
| ERA5 | 139.24 | 13.30 | 0.10 | |
| CFSv2 | 128.97 | 10.87 | 0.08 | |
| JRA55 | 161.55 | 23.05 | 0.09 | |
| STD | Xisha | 82.38 | 33.56 | 0.13 |
| ERA5 | 100.56 | 21.67 | 0.10 | |
| CFSv2 | 100.41 | 26.51 | 0.10 | |
| JRA55 | 104.17 | 27.94 | 0.10 | |
| Confidence Interval (95%) | Xisha | [−78.37, 244.57] | [−37.82, 93.75] | [−0.09, 0.43] |
| ERA5 | [−57.86, 336.33] | [−29.17, 55.77] | [−0.10, 0.29] | |
| CFSv2 | [−67.84, 325.78] | [−41.09, 62.83] | [−0.11, 0.27] | |
| JRA55 | [−42.63, 365.74] | [−31.72, 77.82] | [−0.11, 0.29] |
| Metrics | Products | CO2 Flux |
|---|---|---|
| Mean | Xisha | −2.02 |
| MCAS | −1.21 | |
| GONGGA | −1.43 | |
| SOCAT | 0.07 | |
| STD | Xisha | 5.09 |
| MCAS | 1.16 | |
| GONGGA | 1.14 | |
| SOCAT | 3.08 | |
| Confidence Interval (95%) | Xisha | [−11.99, 7.96] |
| MCAS | [−3.49, 1.07] | |
| GONGGA | [−3.67, 0.81] | |
| SOCAT | [−5.97, 6.10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; He, X.; Jiang, L.; Ji, Q.; Jiang, H.; He, H. Evaluation of Air–Sea Flux Products Based on Observations in the Northern South China Sea. J. Mar. Sci. Eng. 2025, 13, 2358. https://doi.org/10.3390/jmse13122358
Chen H, He X, Jiang L, Ji Q, Jiang H, He H. Evaluation of Air–Sea Flux Products Based on Observations in the Northern South China Sea. Journal of Marine Science and Engineering. 2025; 13(12):2358. https://doi.org/10.3390/jmse13122358
Chicago/Turabian StyleChen, Hui, Xingjie He, Lifang Jiang, Qiyan Ji, Hao Jiang, and Hailun He. 2025. "Evaluation of Air–Sea Flux Products Based on Observations in the Northern South China Sea" Journal of Marine Science and Engineering 13, no. 12: 2358. https://doi.org/10.3390/jmse13122358
APA StyleChen, H., He, X., Jiang, L., Ji, Q., Jiang, H., & He, H. (2025). Evaluation of Air–Sea Flux Products Based on Observations in the Northern South China Sea. Journal of Marine Science and Engineering, 13(12), 2358. https://doi.org/10.3390/jmse13122358

