Monitoring Resilience in Coastal Systems: A Comprehensive Assessment
Abstract
1. Introduction
2. Pathways to Coastal Resiliency Assessment: An Overview
2.1. Assessment of Coastal Resilience in Natural Systems
2.2. Assessment of Coastal Resilience in Human-Controlled Systems
3. Monitoring Morphological Evolution of Coasts Towards Resilience Assessment
3.1. Yucatan Study Case in Gulf of Mexico: Sandy Coast
3.1.1. Geographical Location and Morphological Characteristics
3.1.2. Physical Drivers and Natural Disturbances in the Region
3.1.3. Anthropogenic Disturbances
3.1.4. Morphological Response to Physical and Anthropogenic Disturbances
3.2. Normandy Study Case in NW English Channel: Gravel Coast
3.2.1. Geographical Location and Morphological Characteristics
3.2.2. Physical Drivers and Natural Disturbances
3.2.3. Anthropogenic Disturbances
3.2.4. Morphological Response to Physical and Anthropogenic Disturbances
3.3. Egmond Aan Zee Study Case in the North Sea: Subtidal Bar
3.3.1. Geographical Location and Geomorphological Characteristics
3.3.2. Physical Drivers and Natural Disturbances
3.3.3. Anthropogenic Disturbances
3.3.4. Morphological Response to Physical and Anthropogenic Disturbances

3.4. Case of Bateman Bay in Australia Coast: Muddy Beach
3.4.1. Geographical Location and Geomorphological Characteristics
3.4.2. Physical Drivers and Natural Disturbances
3.4.3. Anthropogenic Disturbances
3.5. Hangzhou Bay in China Coast: Angdon Tidal Flat
3.5.1. Geographical Location and Geomorphological Characteristics
3.5.2. Physical Drivers and Natural Disturbances
3.5.3. Anthropogenic Disturbances
4. Discussions: How Is the Resilience Trajectory Changing in Coastal Systems?
4.1. Comprehensive Overview of Resilience Trajectory
4.2. Limitations and Challenges: From Beaches to Deltaic Systems
4.3. Opportunities Offered by Satellite Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Zheng, Q.; Bingham, R.; Andrews, O. Using Sea Level to Determine the Strength, Structure and Variability of the Cape Horn Current. Geophys. Res. Lett. 2023, 50, e2023GL105033. [Google Scholar] [CrossRef]
- McNamara, D.E.; Murray, A.B.; Smith, M.D. Coastal sustainability depends on how economic and coastline responses to climate change affect each other. Geophys. Res. Lett. 2011, 38, L07401. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L.; Pranzini, E. Beach Sediment Alteration by Natural Processes and Human Actions: Elba Island, Italy. Ann. Assoc. Am. Geogr. 2004, 94, 794–806. [Google Scholar] [CrossRef]
- Lazarus, E.D. Scaling laws for coastal overwash morphology. Geophys. Res. Lett. 2016, 43, 12113–12119. [Google Scholar] [CrossRef]
- Park, J.J.; Denson, N. When Race and Class Both Matter: The Relationship Between Socioeconomic Diversity, Racial Diversity, and Student Reports of Cross–Class Interaction. Res. High. Educ. 2013, 54, 725–745. [Google Scholar] [CrossRef]
- Sheaves, M. Simple processes drive unpredictable differences in estuarine fish assemblages: Baselines for understanding site-specific ecological and anthropogenic impacts. Estuar. Coast. Shelf Sci. 2016, 170, 61–69. [Google Scholar] [CrossRef]
- Townend, I.H.; French, J.R.; Nicholls, R.J.; Brown, S.; Carpenter, S.; Haigh, I.D.; Hill, C.T.; Lazarus, E.; Penning-Rowsell, E.C.; Thompson, C.E.L.; et al. Operationalising coastal resilience to flood and erosion hazard: A demonstration for England. Sci. Total Environ. 2021, 783, 146880. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.R.; Leslie, H.M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 2013, 5, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Resilience and stability of ecological systems. In Part IV—Socio-Environmental Research in Ecology; International Institute for Applied Systems Analysis: Laxenburg, Austria, 1973. [Google Scholar]
- Klein, R.J.T.; Smit, M.J.; Goosen, H.; Hulsbergen, C.H. Resilience and vulnerability: Coastal dynamics or Dutch dikes? Geophys. J. 1998, 164, 259–268. [Google Scholar] [CrossRef]
- Masselink, G.; Lazarus, E.D. Defining Coastal Resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef]
- Kombiadou, K.; Costas, S.; Carrasco, R.; Plomaritis, T.A.; Ferreira, O.; Matias, F. Bridging the gap between resilience and geomorphology of complex coastal systems. Earth-Sci. Rev. 2019, 198, 102934. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Scown, M. Social-ecological resilience and geomorphic systems. Geomorphology 2018, 305, 221–230. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 2007, 12, 23. [Google Scholar] [CrossRef]
- Flood, S.; Schechtman, J. The rise of resilience: Evolution of a new concept in coastal planning in Ireland and the US. Ocean Coast. Manag. 2014, 102, 19–31. [Google Scholar] [CrossRef]
- Lin, Z.; Singh, M. Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China. Sustainability 2024, 16, 609. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef]
- Thoms, M.; Delong, M. Ecosystem Responses to Water Resource Developments in a Large Dryland River. Water Resour. Res. 2018, 54, 6643–6655. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Marcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef]
- Panerati, J.; Schwind, N.; Zeltner, S.; Inoue, K.; Beltrame, G. Assessing the resilience of stochastic dynamic systems under partial observability. PLoS ONE 2018, 13, 1932–6203. [Google Scholar] [CrossRef] [PubMed]
- van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; Higgins, R.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef]
- Vos, M.; Kooi, B.W.; DeAngelis, D.L.; Mooij, W.M. Inducible defenses in food webs. In Dynamic Food Webs. Multispecies Assemblages, Ecosystem Development and Environmental Change; de Ruiter, P.C., Wolters, V., Moore, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 114–127. [Google Scholar]
- Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Malvarez, G.; Ferreira, O.; Navas, F.; Cooper, J.A.G.; Gracia-Prieto, F.J.; Talavera, L. Storm impacts on a coupled human-natural coastal system: Resilience of developed coasts. Sci. Total Environ. 2021, 768, 144987. [Google Scholar] [CrossRef]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Murshed, S.; Griffin, A.L.; Islam, M.A.; Olivier, T.; Wang, H.X.; Paull, D.J. A framework for appraising the status of disaster resilience within the multi-hazard environment of coastal Bangladesh. Int. J. Disaster Risk Reduct. 2024, 113, 104832. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups i, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (Eds.)]; IPCC: Geneva, Switzerland, 2023.
- Pimm, S.L. The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities; University of Chicago: Chicago, IL, USA, 1991. [Google Scholar]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Long, A.; Waller, M.; Plater, P. Coastal resilience and late Holocene tidal inlet history: The evolution of Dungeness Foreland and the Romney Marsh depositional complex (UK). Geomorphology 2006, 82, 309–330. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Costas, S.; Guisado-Pintado, E. Large-scale transgressive coastal dune behaviour in Europe during the Little Ice Age. Glob. Planet. Change 2019, 175, 82–91. [Google Scholar] [CrossRef]
- Ajedegba, J.O.; Choi, J.W.; Jones, K.D. Analytical modeling of coastal dune erosion at South Padre Island: A consideration of the effects of vegetation roots and shear strength. Ecol. Eng. 2019, 127, 187–194. [Google Scholar] [CrossRef]
- Feagin, R.A.; Innocenti, R.A.; Bond, H.; Wengrove, M.; Huff, T.P.; Lomonaco, P.; Tsai, B.; Puelo, J.; Pontiki, M.; Figlus, J.; et al. Does vegetation accelerate coastal dune erosion during extreme events? Sci. Adv. 2023, 9, eadg7135. [Google Scholar] [CrossRef]
- Sigren, J.; Figlus, J.; Armitage, A. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 2014, 82, 5–12. [Google Scholar]
- Van Gent, M.R.A.; van Thiel de Vries, J.M.S.; Coeveld, E.M.; de Vroeg, J.H.; van de Graaff, J. Large-scale dune erosion tests to study the influence of wave periods. Coast. Eng. 2008, 55, 1041–1051. [Google Scholar] [CrossRef]
- Sallenger, A.H., Jr. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Dong, Z.; Elko, N.; Robertson, Q.; Rosati, J. Quantifying beach and dune resilience using the coastal resilience index. Coast. Eng. Pro. 2018, 1, 30. [Google Scholar] [CrossRef]
- Mariotti, G.; Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. Earth Surf. 2010, 115, F01004. [Google Scholar] [CrossRef]
- Leonardi, N.; Carnacina, I.; Donatelli, C.; Ganju, N.K.; Plater, A.J.; Schuerch, M.; Temmerman, S. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 2018, 301, 92–107. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Warrick, R.A.; Lu, X.; Antony, J.L. Sea-level scenarios for evaluating coastal impacts. WIREs Clim. Change 2014, 5, 129–150. [Google Scholar] [CrossRef]
- Lawrence, J.; Bell, R.; Stroombergen, A. A hybrid process to address uncertainty and changing climate risk in coastal areas using dynamic adaptive pathways planning, multi-criteria decision analysis & real options analysis: A New Zealand application. Sustainability 2019, 11, 406. [Google Scholar] [CrossRef]
- Ranger, N.; Reeder, T.; Lowe, J. Addressing ‘deep’ uncertainty over long-term climate in major infrastructure projects: Four innovations of the Thames Estuary 2100 Project. EURO J. Decis. Process. 2013, 1, 233–262. [Google Scholar] [CrossRef]
- Stephens, S.A.; Bell, R.J.; Lawrence, J. Applying principles of uncertainty within coastal hazard assessments to better support coastal adaptation. J. Mar. Sci. Eng. 2017, 5, 40. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Squires, D.; Steinshamn, S.I. Towards resilience-based management of marine capture fisheries. Econ. Anal. Policy 2023, 77, 231–238. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Torres-Freyermuth, A.; Ojeda, E.; Gabriela, M.; Rodolfo, R.N.; Salles, P.; Turki, I. Seasonal changes in beach resilience along an urbanized barrier island. Front. Mar. Sci. 2022, 9, 889820. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2017, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Franklin, G.L.; Medellin, G.; Appendini, C.M.; Gómez, J.A.; Freyermuth, A.T.; González, J.L.; Ruiz-Salcines, P. Impact of port development on the northern Yucatan Peninsula coastline. Reg. Stud. Mar. Sci. 2021, 45, 101835. [Google Scholar] [CrossRef]
- Lowery, J.G.; Rankey, E.C. Nearshore Influences of Upwelling, Waves, and Currents on A Tropical Carbonate Ramp: Holocene, Northwestern Yucatán Shelf, Mexico. J. Sed. Res. 2017, 87, 546–566. [Google Scholar] [CrossRef]
- Anthony, E.; Aagaard, T. The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach. Earth Sci. Rev. 2020, 210, 103334. [Google Scholar] [CrossRef]
- Carnero-Bravo, V.; Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C.; Merino-Ibarra, M.; Hillaire-Marcel, C.; Corcho-Alvarado, J.C.; Röllin, S.; Diaz-Asencio, M.; Cardoso-Mohedano, J.G.; Zavala-Hidalgo, J. Sedimentary records of recent sea level rise and acceleration in the Yucatan Peninsula. Sci. Total Environ. 2016, 573, 1063–1069. [Google Scholar] [CrossRef]
- Medellín, G.; Torres-Freyermuth, T.; Cohn, N. Distinct sandbar behavior on a gently sloping shoreface sea-breeze dominated beach. Mar. Geol. 2025, 484, 107543. [Google Scholar] [CrossRef]
- Medellín, G.; Torres-Freyermuth, A. Foredune formation and evolution on a prograding sea-breeze dominated beach. Cont. Shelf Res. 2021, 226, 104495. [Google Scholar] [CrossRef]
- Jennings, R.; Shulmeister, A. A field based classification scheme for gravel beaches. Mar. Geol. 2002, 186, 211–228. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; Gutiérrez Barceló, Á.D.; Costa, S.; Laignel, B.; Bazin, B.; Soufflet, Y.; Le Louargant, L.; Maquaire, O. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems. Coast. Eng. 2021, 167, 103894. [Google Scholar] [CrossRef]
- Soloy, A.; Turki, I.; Lecoq, N.; López Solano, C.; Laignel, B. Spatio-temporal variability of the morpho-sedimentary dynamics observed on two gravel beaches in response to hydrodynamic forcing. Mar. Geol. 2022, 447, 106796. [Google Scholar] [CrossRef]
- López Solano, C.; Turki, E.I.; Hamdi, Y.; Soloy, A.; Costa, S.; Laignel, B.; Gutiérrez Barceló, Á.D.; Abcha, N.; Jacono, D.; Lafite, R. Dynamics of Nearshore Waves during Storms: Case of the English Channel and the Normandy Coasts. Water 2022, 14, 321. [Google Scholar] [CrossRef]
- López Solano, C.; Turki, E.I.; Mendoza, E.T.; Gutiérrez Barceló, A.D.; Migaud, A.; Hamdi, Y.; Laignel, B.; Lafite, R. Hydrodynamic modelling for simulating nearshore waves and sea levels: Classification of extreme events from the English Channel to the Normandy coasts. Nat. Hazards 2024, 120, 13951–13973. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Van Enckevort, I.M.J.; Kingston, K.S.; Davidson, M.A. Analysis of observed two-and three-dimensional nearshore bar behaviour. Mar. Geol. 2022, 169, 161–183. [Google Scholar] [CrossRef]
- Aagaard, T.; Kroon, A.; Andersen, S.; Sørensen, R.M.; Quartel, S.; Vinther, N. Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar. Geol. 2005, 218, 65–80. [Google Scholar] [CrossRef]
- De Winter, R.C.; Gongriep, F.; Ruessink, B.G. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coast. Eng. 2025, 99, 167–175. [Google Scholar] [CrossRef]
- Van Duin, M.J.P.; Wiersma, N.R.; Walstra, D.J.R.; Van Rijn, L.C.; Stive, M.J.F. Nourishing the shoreface: Observations and hindcasting of the Egmond case, The Netherlands. Coast. Eng. 2004, 51, 813–837. [Google Scholar] [CrossRef]
- Brand, E.; Ramaekers, G.; Lodder, Q. Dutch experience with sand nourishments for dynamic coastline conservation–An operational overview. Ocean Coast. Manag. 2022, 217, 106008. [Google Scholar] [CrossRef]
- Donker, J.; Van Maarseveen, M.; Ruessink, G. Spatio-temporal variations in foredune dynamics determined with mobile laser scanning. J. Mar. Sci. Eng. 2018, 6, 126. [Google Scholar] [CrossRef]
- Tuijnman, J.T.; Donker, J.J.; Schwarz, C.S.; Ruessink, G. Consequences of a storm surge for aeolian sand transport on a low-gradient beach. J. Mar. Sci. Eng. 2000, 8, 584. [Google Scholar] [CrossRef]
- Ruessink, G.; Schwarz, C.S.; Price, T.D.; Donker, J.J.A. A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands. Data 2019, 4, 73. [Google Scholar] [CrossRef]
- Brand, E.; Lodder, Q.; Quataert, E.; Slinger, J. Sustainable coastline management-the cumulative effects of 30 years of nourishments in the Netherlands. Ocean Coast. Manag. 2025, 270, 107895. [Google Scholar] [CrossRef]
- van der Werf, J.J.; Huisman, B.J.A.; Price, T.D.; Larsen, B.E.; de Schipper, M.A.; McFall, B.C.; Krafft, D.R.; Lodder, Q.J.; Ruessink, B.G. Shoreface nourishments: Research advances and future perspectives. Earth Sci. Rev. 2025, 267, 105138. [Google Scholar] [CrossRef]
- Kroon, A.; de Schipper, M.; de Vries, S.; Aarninkhof, S. Subaqueous and Subaerial Beach Changes After Implementation of a Mega Nourishment in Front of a Sea Dike. J. Mar. Sci. Eng. 2022, 10, 1152. [Google Scholar] [CrossRef]
- Huisman, B.J.; Walstra, D.J.R.; Radermacher, M.; de Schipper, M.A.; Ruessink, B.G. Observations and modelling of shoreface nourishment behaviour. J. Mar. Sci. Eng. 2019, 7, 59. [Google Scholar] [CrossRef]
- Ojeda, E.; Ruessink, G.; Guillén, J. Morphodynamic response of a two-barred beach to a shoreface nourishment. Coast. Eng. 2008, 55, 1185–1196. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Van der Grinten, R.M.; Vonhögen-Peeters, L.M.; Ramaekers, G.; Lodder, Q.J. Nearshore evolution at Noordwijk (NL) in response to nourishments, as inferred from Argus video imagery. In NCK-Days 2012: Crossing Borders in Coastal Research; University of Twente: Enschede, The Netherlands, 2012. [Google Scholar]
- Haverkate, S.M. Nearshore Dynamics of a Nourished Coast with Respect to a Neighbouring Natural Coast. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2020. Available online: https://studenttheses.uu.nl/handle/20.500.12932/39858 (accessed on 31 October 2025).
- Wang, A.; Wang, X.H.; Yang, G. The effects of wind-driven storm events on partly sheltered estuarine beaches in Batemans Bay, New South Wales, Australia. J. Mar. Sci. Eng. 2021, 9, 314. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.H.; Zhong, Y.; Oliver, T.S.N. Modelling study on the sediment dynamics and the formation of the flood-tide delta near Cullendulla Beach in Batemans Bay, Australia. Mar. Geol. 2022, 452, 106910. [Google Scholar] [CrossRef]
- Li, L.; Ren, Y.; Ye, T.; Wang, X.; Hu, J.; Xia, Y. Positive feedback between the tidal flat variations and sediment dynamics: An example study in the macro-tidal turbid Hangzhou Bay. J. Geophys. Res. Oceans 2023, 128, e2022JC019414. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.; Song, L.; Yu, J.; Liu, R.; Wang, S.; Wan, Z.; Sokolova, I.M.; Huang, W.; Wang, Y. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environ. Pollut. 2020, 266, 115137. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, W.; Wang, H.; Zhang, J.; Dong, J. Evaluation of sea level rise and associated responses in Hangzhou Bay from 1978 to 2017. Adv. Clim. Change Res. 2018, 9, 227–233. [Google Scholar] [CrossRef]
- Wen, W.; Wan, L. Coastal ecological and environmental management under multiple anthropogenic pressures: A review of theory and evaluation methods. J. Curr. Trends Estuar. Coast. Dyn. 2024, 4, 385–415. [Google Scholar] [CrossRef]
- Castelle, B.; Turner, I.L.; Ruessink, B.G.; Tomlinson, R.B. Impact of storms on beach erosion: Broadbeach (Gold Coast, Australia). J. Coast. Res. 2007, 50 (Suppl. S1), 534–539. [Google Scholar] [CrossRef]
- Molina, R.; Manno, G.; Villar, A.C.d.; Jigena-Antelo, B.; Muñoz-Pérez, J.J.; Cooper, J.A.G.; Pranzini, E.; Anfuso, G. The Effects of Anthropic Structures on Coastline Morphology: A Case Study from the Málaga Coast (Spain). J. Mar. Sci. Eng. 2025, 13, 319. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Anfuso, G. Coastal storm characterization and morphological impacts on sandy coasts. Earth Surf. Process. Landf. 2011, 36, 1997–2010. [Google Scholar] [CrossRef]
- Laignel, B.; Vignudelli, S.; Almar, R.; Becker, M.; Bentamy, A.; Benveniste, J.; Birol, F.; Frappart, F.; Idier, D.; Salameh, E.; et al. Observation of the Coastal Areas, Estuaries and Deltas from Space. Surv. Geophys. 2023, 44, 1309–1356. [Google Scholar] [CrossRef]
- Melet, A.; Almar, R.; Hemer, M.; Le Cozannet, G.; Meyssignac, B.; Ruggiero, P. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 2020, 125, e2020JC016078. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A. Modelling high resolution RS data with the aid of coarse resolution data and ancillary data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 360–371. [Google Scholar] [CrossRef]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a Coastal Hazards Observing System. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef]
- Cazenave, A.; Gouzenes, Y.; Birol, F.; Leger, F.; Passaro, M.; Calafat, F.M.; Shaw, A.; Nino, F.; Legeais, J.F.; Oelsmann, J.; et al. Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations. Commun. Earth Environ. 2022, 3, 117. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Willis, J.K. Vinogradova, N, The Emerging Golden Age of Satellite Altimetry to Prepare Humanity for Rising Seas. Earth’s Future 2023, 11, e2023EF003673. [Google Scholar] [CrossRef]










| Date | Hs,max | Tp | Dir (°) | Dur (h) | E (W/m) (×105) |
|---|---|---|---|---|---|
| (m) | (s) | ||||
| 10 March 2019 | 5.3 | 7.5 | 275 | 31 | 3.28 |
| Gareth | |||||
| 12 March 2019 | 4.5 | 7.1 | 262 | 108 | 7.63 |
| 8 December 2019 | 5.4 | 7.5 | 273 | 34 | 3.55 |
| 13 December 2019 | 4.8 | 7.7 | 264 | 63 | 5.77 |
| Ciara | |||||
| 9 February 2020 | 6.1 | 8.1 | 260 | 74 | 9.90 |
| 15 February 2020 | 4.7 | 7.6 | 245 | 63 | 5.43 |
| CRESTE Sites | Physical Drivers | Internal Characteristics | Anthropogenic Activities |
|---|---|---|---|
| Yucatan Beach Mexico | Hurricanes Wave- dominated system | Sandy Beach | Dykes |
| Normandy Beach France | Storms | Gravel Beach | Groins |
| Wave and tide- dominated system | (Gravels with low sand content) | ||
| Egmond Beach, Netherlands | Storms Wave- dominated system | Subtidal bars | Shoreface Nourishment |
| Batemans Bay—Australia | Storms River-, tide- and wave- dominated system | Cullendulla Beach (Mud with low sand Content) | Dredging |
| Presence of mangroves and Salt-marshes | |||
| Hangzhou Bay, China | Typhons River, tide dominated system (less dominance of waves) | Angdon Tidal Flat | Coastal Structures and Nourishments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turki, E.I.; Ojeda, E.; Mendoza, E.T.; Medellín, G.; Price, T.D.; Salameh, E.; Wang, X.H.; Li, L.; Franklin, G.L.; Torres-Freyermuth, A. Monitoring Resilience in Coastal Systems: A Comprehensive Assessment. J. Mar. Sci. Eng. 2025, 13, 2113. https://doi.org/10.3390/jmse13112113
Turki EI, Ojeda E, Mendoza ET, Medellín G, Price TD, Salameh E, Wang XH, Li L, Franklin GL, Torres-Freyermuth A. Monitoring Resilience in Coastal Systems: A Comprehensive Assessment. Journal of Marine Science and Engineering. 2025; 13(11):2113. https://doi.org/10.3390/jmse13112113
Chicago/Turabian StyleTurki, Emma Imen, Elena Ojeda, Ernesto Tonatiuth Mendoza, Gabriela Medellín, Timothy D. Price, Edward Salameh, Xiao Hua Wang, Li Li, Gemma L. Franklin, and Alec Torres-Freyermuth. 2025. "Monitoring Resilience in Coastal Systems: A Comprehensive Assessment" Journal of Marine Science and Engineering 13, no. 11: 2113. https://doi.org/10.3390/jmse13112113
APA StyleTurki, E. I., Ojeda, E., Mendoza, E. T., Medellín, G., Price, T. D., Salameh, E., Wang, X. H., Li, L., Franklin, G. L., & Torres-Freyermuth, A. (2025). Monitoring Resilience in Coastal Systems: A Comprehensive Assessment. Journal of Marine Science and Engineering, 13(11), 2113. https://doi.org/10.3390/jmse13112113

