Dynamically Tuned Variational Mode Decomposition and Convolutional Bidirectional Gated Recurrent Unit Algorithm for Coastal Sea Level Prediction
Abstract
1. Introduction
- (1)
- The GWO algorithm, combined with four entropy criteria including envelope entropy (EnVeEn), fuzzy entropy (FuzzyEn), permutation entropy (PeEn), and sample entropy (SpEn), can achieve dynamic optimization of VMD parameters such as the number of modes K and penalty factor α, resolving the mode aliasing problem induced by traditional empirical settings.
- (2)
- Intrinsic modal components generated by optimized VMD decomposition are input into a convolutional neural network-bidirectional gated recurrent unit (CNN-BiGRU) coupled model. In this model, spatially relevant features are extracted by the CNN layer. Long- and short-term dependencies in the time series are captured by the BiGRU layer through learning.
- (3)
- Comparative analysis of time feature length windows and statistical analysis of monthly-scale prediction performance help to improve model adaptability to different time scales and verify the accuracy and stability of prediction results.
- (4)
- Site-specific discrepancies in regional sea level predictions are identified and, through a “phenomenon–cause–scientific significance” framework, translated into actionable insights for climate adaptation, coastal planning, and storm surge and flood risk management.
2. Related Work
2.1. Signal Decomposition Methods
2.2. Machine Learning Methods
2.3. Deep Learning Methods
2.4. General Remarks
3. Materials and Methods
3.1. Overall Framework
3.2. Variational Mode Decomposition and Its Dynamic Optimization
3.2.1. Variational Mode Decomposition Theory
3.2.2. Dynamic Tuning Process
3.3. Deep Learning Prediction Model
3.3.1. Convolutional Neural Network
3.3.2. Bidirectional Gated Recurrent Unit
3.4. Evaluation Metrics
3.5. Implementation of Proposed Strategy
| Algorithm 1. Dynamic tuning of variational mode decomposition and convolutional bidirectional gated recurrent unit for predicting sea level changes |
| Input: Monthly mean sea level data; VMD parameter ranges K, α; grey wolf population size pop; maximum iterations Tmax; CNN-BiGRU hyperparameters (kernel, maxpool, hidden, epochs, batch_size, L_rate); activation function; optimizer; tolerance tol; feature window size CSize. |
| Output: Predicted sea level time series; evaluation metrics (RMSE, MAE, MAPE, NSE). |
| 1: Preprocess data: normalization, missing value imputation, and outlier handling. |
| 2: Initialize the grey wolf population with random combinations of VMD parameters K, α. |
| 3: Iterative Optimization: |
| • Perform VMD decomposition for each parameter set. |
| • Evaluate fitness using selected entropy criterion (EnVeEn, PeEn, FuzzyEn, SpEn). |
| • Update grey wolf positions according to GWO rules. |
| 4: Select optimal VMD parameters K, α. |
| 5: Conduct multi-scale VMD decomposition using optimized parameters. |
| 6: For each intrinsic mode component: |
| • Extract features and partition data into training and testing sets. |
| • Train CNN-BiGRU model to learn spatial-temporal correlations. |
| • Generate mode-specific predictions. |
| 7: Aggregate predictions from all modes to produce the final sea level prediction. |
| 8: Evaluate performance using RMSE, MAE, MAPE, NSE, and other relevant metrics. |
4. Results
4.1. Datasets Description and Parameter Settings
4.2. Entropy Criterion Performance
4.3. Prediction Quality of Deep Learning Models
5. Discussion
5.1. Evaluation at Different Time Steps
5.2. Monthly-Scale Statistical Prediction Performance
- (1)
- Performance of entropy criteria across each month
- (2)
- Performance of deep learning models across each month
- (3)
- Seasonal fluctuation characteristics
5.3. Extended Adaptability
5.4. Differences in Site Prediction and Regional Dynamics Insights
6. Conclusions
- (1)
- Dynamic Optimization of Signal Decomposition: A dynamic VMD optimization strategy was developed to mitigate mode aliasing inherent in conventional decomposition methods. This approach reduced the RMSE of predictions by up to 33% (from 20.790 mm to 13.857 mm) and achieved an NSE of 0.986, establishing a high-fidelity foundation for subsequent forecasting.
- (2)
- Hybrid CNN-BiGRU Architecture for Feature Extraction: The CNN-BiGRU model captures both local spatial features and long-range bidirectional temporal dependencies within decomposed sea level components while accurately characterizing complex periodic fluctuations and nonlinear distortions, thereby improving dynamic tracking and error convergence.
- (3)
- Comprehensive Evaluation Protocol: Beyond standard accuracy metrics, a systematic evaluation protocol incorporating entropy criterion selection and feature time step analysis was employed. An optimal feature time step of six months was identified, which provided actionable guidance for robust model implementation.
- (4)
- Regional Predictability and Tailored Modeling Guidance: Comparative analysis revealed pronounced site-specific differences. The East China Sea (Kanmen Station), characterized by stable periodicity, exhibited high predictability, whereas the South China Sea (Zhapo Station), influenced by typhoons and circulation anomalies, presented greater challenges. These findings underscore the need to tailor forecasting models: leveraging long-term periodic signals for early warning in stable regions, while incorporating real-time dynamic factors to support adaptive coastal management in complex environments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagnell, A.; DeVries, T. Global Mean Sea Level Rise Inferred from Ocean Salinity and Temperature Changes. Geophys. Res. Lett. 2023, 50, e2022GL101004. [Google Scholar] [CrossRef]
- Palmer, M.D.; Harrison, B.J.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Weeks, J.H. A Framework for Physically Consistent Storylines of UK Future Mean Sea Level Rise. Clim. Change 2024, 177, 106. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Fournier, S.; Thompson, P.R.; Marcos, M. Sea Level Rise in 2024. Nat. Rev. Earth Environ. 2025, 6, 246–248. [Google Scholar] [CrossRef]
- Abdelhafez, M.A.; Mahmoud, H.N.; Ellingwood, B.R. Adjusting to the Reality of Sea Level Rise: Reshaping Coastal Communities through Resilience-Informed Adaptation. Clim. Change 2024, 177, 110. [Google Scholar] [CrossRef]
- Cantelon, J.A.; LeRoux, N.K.; Mulligan, R.P.; Swatridge, L.; Kurylyk, B.L. Interrelated Coastal Flooding, Erosion, and Groundwater Salinization on a Barrier Island during Hurricane Fiona. J. Geophys. Res. Earth Surf. 2024, 129, e2023JF007551. [Google Scholar] [CrossRef]
- Mu, D.; Xu, T.; Yan, H. Sea Level Rise along China Coast from 1950 to 2020. Sci. China Earth Sci. 2024, 67, 802–810. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.; Qin, J.; Zhou, G.; Jiang, L. The Dynamic Mechanism of Sea Level Variations in the Bohai Sea and Yellow Sea. Clim. Dyn. 2023, 61, 2937–2947. [Google Scholar] [CrossRef]
- Huang, W.-C.; Liu, W.-C.; Liu, H.-M. Uncertainty Analysis of Overflow Due to Sea Dike Failure during Typhoon Events. J. Mar. Sci. Eng. 2025, 13, 573. [Google Scholar] [CrossRef]
- Liu, W.; Fujii, K.; Maruyama, Y.; Yamazaki, F. Inundation Assessment of the 2019 Typhoon Hagibis in Japan Using Multi-Temporal Sentinel-1 Intensity Images. Remote Sens. 2021, 13, 639. [Google Scholar] [CrossRef]
- Sun, Q.; Wan, J.; Liu, S.; Jiang, J.; Muhammad, Y. A New Decomposition Model of Sea Level Variability for the Sea Level Anomaly Time Series Prediction. J. Oceanol. Limnol. 2023, 41, 1629–1642. [Google Scholar] [CrossRef]
- Raj, N.; Gharineiat, Z.; Ahmed, A.A.M.; Stepanyants, Y. Assessment and Prediction of Sea Level Trend in the South Pacific Region. Remote Sens. 2022, 14, 986. [Google Scholar] [CrossRef]
- Rashid, M.M.; Wahl, T. Predictability of Extreme Sea Level Variations along the U.S. Coastline. J. Geophys. Res. Oceans 2020, 125, e2020JC016295. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Geng, J.; Chen, Q. Global Mean Sea Level Change Projections up to 2100 Using a Weighted Singular Spectrum Analysis. J. Mar. Sci. Eng. 2024, 12, 2124. [Google Scholar] [CrossRef]
- Ahmadi, F.; Tohidi, M.; Sadrianzade, M. Streamflow Prediction Using a Hybrid Methodology Based on Variational Mode Decomposition (VMD) and Machine Learning Approaches. Appl. Water Sci. 2023, 13, 135. [Google Scholar] [CrossRef]
- Shen, W.; Ying, Z.; Zhao, Y.; Wang, X. Significant Wave Height Prediction in Monsoon Regions Based on the VMD-CNN-BiLSTM Model. Front. Mar. Sci. 2024, 11, e1503552. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Shen, W.; Ou, Z.; Zhang, J. Economic Loss Assessment of Typhoon-Induced Storm Surge Disasters in the South China Sea Based on GSA-BP Model. Front. Earth Sci. 2023, 11, e1258524. [Google Scholar] [CrossRef]
- Gholami Rostam, M.; Sadatinejad, S.J.; Malekian, A. Precipitation Forecasting by Large-Scale Climate Indices and Machine Learning Techniques. J. Arid. Land 2020, 12, 854–864. [Google Scholar] [CrossRef]
- Riahi-Madvar, H.; Dehghani, M.; Memarzadeh, R.; Gharabaghi, B. Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS. Water Resour. Manag. 2021, 35, 1149–1166. [Google Scholar] [CrossRef]
- Elshewey, A.M. Enhancing Crop Yield Prediction Based on Dove Optimization Algorithm and Gradient Boosting Model. Signal Image Video Process. 2025, 19, 951. [Google Scholar] [CrossRef]
- Elshewey, A.M.; Osman, A.M. Orthopedic Disease Classification Based on Breadth-First Search Algorithm. Sci. Rep. 2024, 14, 23368. [Google Scholar] [CrossRef]
- Elshewey, A.M.; Abed, A.H.; Khafaga, D.S.; Alhussan, A.A.; Eid, M.M.; El-kenawy, E.-S.M. Enhancing Heart Disease Classification Based on Greylag Goose Optimization Algorithm and Long Short-Term Memory. Sci. Rep. 2025, 15, 1277. [Google Scholar] [CrossRef]
- Elshewey, A.M.; Alhussan, A.A.; Khafaga, D.S.; Elkenawy, E.-S.M.; Tarek, Z. EEG-Based Optimization of Eye State Classification Using Modified-BER Metaheuristic Algorithm. Sci. Rep. 2024, 14, 24489. [Google Scholar] [CrossRef] [PubMed]
- Sithara, S.; Pramada, S.K.; Thampi, S.G. Sea Level Prediction Using Climatic Variables: A Comparative Study of SVM and Hybrid Wavelet SVM Approaches. Acta Geophys. 2020, 68, 1779–1790. [Google Scholar] [CrossRef]
- Zahura, F.T.; Goodall, J.L.; Sadler, J.M.; Shen, Y.; Morsy, M.M.; Behl, M. Training Machine Learning Surrogate Models from a High-Fidelity Physics-Based Model: Application for Real-Time Street-Scale Flood Prediction in an Urban Coastal Community. Water Resour. Res. 2020, 56, e2019WR027038. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B. Analysis of the Superposition Effect of Land Subsidence and Sea-Level Rise in the Tianjin Coastal Area and Its Emerging Risks. Remote Sens. 2023, 15, 3341. [Google Scholar] [CrossRef]
- Bay, Y.Y.; Yearick, K.A. Machine Learning vs Deep Learning: The Generalization Problem. arXiv 2024, arXiv:2403.01621. [Google Scholar] [CrossRef]
- Tumse, S.; Alcansoy, U. Statistical and Deep Learning Approaches in Estimating Present and Future Global Mean Sea Level Rise. Nat. Hazard. 2025, 121, 10377–10404. [Google Scholar] [CrossRef]
- Uluocak, I. Comparative Study of Multivariate Hybrid Neural Networks for Global Sea Level Prediction through 2050. Environ. Earth Sci. 2025, 84, 79. [Google Scholar] [CrossRef]
- Ning, P.; Zhang, C.; Zhang, X.; Jiang, X. Short- to Medium-Term Sea Surface Height Prediction in the Bohai Sea Using an Optimized Simple Recurrent Unit Deep Network. Front. Mar. Sci. 2021, 8, 672280. [Google Scholar] [CrossRef]
- El-Rashidy, N.; Tarek, Z.; Elshewey, A.M.; Shams, M.Y. Multitask Multilayer-Prediction Model for Predicting Mechanical Ventilation and the Associated Mortality Rate. Neural Comput. Appl. 2025, 37, 1321–1343. [Google Scholar] [CrossRef]
- Raj, N.; Brown, J. Prediction of Mean Sea Level with GNSS-VLM Correction Using a Hybrid Deep Learning Model in Australia. Remote Sens. 2023, 15, 2881. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Wang, F. A CNN-BiGRU Sea Level Height Prediction Model Combined with Bayesian Optimization Algorithm. Ocean Eng. 2025, 315, 119849. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Q.; Tsou, J.-Y.; Wong, K.-P.; Men, Y.; Zhang, Y. Multiscale Analysis and Prediction of Sea Level in the Northern South China Sea Based on Tide Gauge and Satellite Data. J. Mar. Sci. Eng. 2023, 11, 1203. [Google Scholar] [CrossRef]
- Huang, S.; Nie, H.; Jiao, J.; Chen, H.; Xie, Z. Tidal Level Prediction Model Based on VMD-LSTM Neural Network. Water 2024, 16, 2452. [Google Scholar] [CrossRef]
- Wang, L.; Liao, S.; Wang, S.; Yin, J.; Li, R.; Guan, J. Real-Time Prediction of Port Water Levels Based on EMD-PSO-RBFNN. Front. Mar. Sci. 2025, 12, 1537696. [Google Scholar] [CrossRef]
- Chen, H.; Lu, T.; Huang, J.; He, X.; Sun, X. An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data. J. Mar. Sci. Eng. 2023, 11, 2386. [Google Scholar] [CrossRef]
- Tiu, E.S.K.; Huang, Y.F.; Ng, J.L.; AlDahoul, N.; Ahmed, A.N.; Elshafie, A. An Evaluation of Various Data Pre-Processing Techniques with Machine Learning Models for Water Level Prediction. Nat. Hazard. 2022, 110, 121–153. [Google Scholar] [CrossRef]
- Wu, J.; Guo, J.; Wu, J. Physics-Informed Hybrid Model for Scour Evolution Prediction around Pile Foundations under Tidal Currents. Phys. Fluids 2025, 37, e0267721. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Yao, Y.; Zhang, Y. Prediction of Water Levels in Large Reservoirs Base on Optimization of Deep Learning Algorithms. Earth Sci. Inf. 2024, 18, 121. [Google Scholar] [CrossRef]
- Li, A.; Zhu, X.; Zhang, Y.; Ren, S.; Zhang, M.; Zu, Z.; Wang, H. Recent Improvements to the Physical Model of the Bohai Sea, the Yellow Sea and the East China Sea Operational Oceanography Forecasting System. Acta Oceanolog. Sin. 2021, 40, 87–103. [Google Scholar] [CrossRef]
- Van Katwyk, P.; Fox-Kemper, B.; Seroussi, H.; Nowicki, S.; Bergen, K.J. A Variational LSTM Emulator of Sea Level Contribution from the Antarctic Ice Sheet. J. Adv. Model. Earth Syst. 2023, 15, e2023MS003899. [Google Scholar] [CrossRef]
- Alenezi, N.; Alsulaili, A.; Alkhalidi, M. Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks. J. Mar. Sci. Eng. 2023, 11, 2052. [Google Scholar] [CrossRef]
- Adwait; Roshni, T. Mean Sea Level Modelling Using the Neural Network along the Chennai Coast. J. Water Clim. Change 2022, 14, 66–82. [Google Scholar] [CrossRef]
- Feng, J.; von Storch, H.; Jiang, W.; Weisse, R. Assessing Changes in Extreme Sea Levels along the Coast of China. J. Geophys. Res. Oceans 2015, 120, 8039–8051. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, G.; Tang, C.; Zhou, X. Mean Sea Level Changes near Weizhou Island from 1969 to 2010. J. Ocean Univ. China 2014, 13, 369–374. [Google Scholar] [CrossRef]
- Karsavran, Y.; Erdik, T.; Ozger, M. An Improved Technique for Streamflow Forecasting between Turkish Straits. Acta Geophys. 2024, 72, 2831–2842. [Google Scholar] [CrossRef]
- Li, S.; Wahl, T.; Fang, J.; Liu, L.; Jiang, T. High-Tide Flooding along the China Coastline: Past and Future. Earth’s Future 2023, 11, e2022EF003225. [Google Scholar] [CrossRef]
- Li, B.; Cai, H.; Li, G.; Liu, J.; She, Z.; Wang, Y.; Ou, S.; Liu, F.; Zhao, T.; Lin, K. A General Unit Hydrograph Theory for Water Level and Tidal Range Distributions in the Modaomen Estuary, China. J. Hydrol. 2024, 643, 131933. [Google Scholar] [CrossRef]













| Parameter Description and Settings | Parameter Description and Settings | ||
|---|---|---|---|
| Grey wolf population size | pop = 30 | Pooling width | maxpool = 2 |
| Number of iterations | Tmax = 200 | Activation function | ReLU |
| Range of modal number K | RK = [3, 10] | Hidden layers of BiGRU | hidden = 128 |
| Range of penalty factor α | Rα = [1000, 3000] | Batch size | batch_size = 64 |
| Noise margin | τ = 0 | BiGRU training rounds | epochs = 120 |
| Convergence tolerance | tol = 1 × 10−7 | Learning rate | L_rate = 0.001 |
| Convolutional layer size | CSize = 1 × 10−7 | loss function | RMSE |
| Convolutional kernel | kernel = 16 | BiGRU optimizer | Adam |
| RMSE (mm) | MAE (mm) | MAPE | NSE | |
|---|---|---|---|---|
| PeEn | 21.931 | 18.292 | 0.258 | 0.964 |
| SpEn | 27.254 | 21.135 | 0.298 | 0.944 |
| FuzzyEn | 20.790 | 16.520 | 0.234 | 0.967 |
| EnVeEn | 13.857 | 10.659 | 0.151 | 0.986 |
| RMSE (mm) | MAE (mm) | MAPE | NSE | |
|---|---|---|---|---|
| LSTM | 39.341 | 31.878 | 0.449 | 0.883 |
| BiGRU | 35.211 | 28.418 | 0.400 | 0.906 |
| CNN-BiLSTM | 18.156 | 13.992 | 0.198 | 0.975 |
| CNN-BiGRU | 13.857 | 10.659 | 0.151 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Chen, G.; Zhou, P.; Rao, W.; Chen, J. Dynamically Tuned Variational Mode Decomposition and Convolutional Bidirectional Gated Recurrent Unit Algorithm for Coastal Sea Level Prediction. J. Mar. Sci. Eng. 2025, 13, 2055. https://doi.org/10.3390/jmse13112055
Zhou Z, Chen G, Zhou P, Rao W, Chen J. Dynamically Tuned Variational Mode Decomposition and Convolutional Bidirectional Gated Recurrent Unit Algorithm for Coastal Sea Level Prediction. Journal of Marine Science and Engineering. 2025; 13(11):2055. https://doi.org/10.3390/jmse13112055
Chicago/Turabian StyleZhou, Zhou, Gang Chen, Ping Zhou, Weibo Rao, and Jifa Chen. 2025. "Dynamically Tuned Variational Mode Decomposition and Convolutional Bidirectional Gated Recurrent Unit Algorithm for Coastal Sea Level Prediction" Journal of Marine Science and Engineering 13, no. 11: 2055. https://doi.org/10.3390/jmse13112055
APA StyleZhou, Z., Chen, G., Zhou, P., Rao, W., & Chen, J. (2025). Dynamically Tuned Variational Mode Decomposition and Convolutional Bidirectional Gated Recurrent Unit Algorithm for Coastal Sea Level Prediction. Journal of Marine Science and Engineering, 13(11), 2055. https://doi.org/10.3390/jmse13112055

