Scour Caused by Propeller Jet Flow on Clay/Sand Mixture Seabed near Vertical Quay Wall
Abstract
1. Introduction
Scour Mechanism in Front of a Wall
2. Experimental Setup
2.1. Preparing Clay/Sand Mixture
2.2. Experimental Procedures
- Preparation of clay/sand mixture.
- Filling the tank with the mixture.
- The prepared clay/sand mixture is carefully poured into the tank.
- Settling the sediment.
- 5.
- Filling the tank with water.
- 6.
- Measuring Reference Elevations.
- 7.
- Running the Propeller.
- 8.
- Measuring Scour Depths.
2.3. Experimental Conditions
2.4. M5P Model Tree
3. Results and Discussion
3.1. Comparison of Scour Profiles for p = 0, 0.05 and 0.1 Clay Contents
3.2. Prediction of Scour Depth in Front of a Vertical Wall
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The world association for waterborne transport infrastructure. In Guidelines for Protecting Berthing Structures from Scour Caused by Ships; Report No.180; P.I.A.N.C.: Brussels, Belgium, 2015.
- Coscarella, F.; Curulli, G.; Penna, N.; Gaudio, R. Physically based formula for the maximum scour depth induced by a propeller jet. Phys. Fluids 2023, 35, 035113. [Google Scholar] [CrossRef]
- Gioia, G.; Bombardelli, F. Scaling and similarity in rough channel flows. Phys. Rev. Lett. 2001, 88, 014501. [Google Scholar] [CrossRef]
- Gioia, G.; Chakraborty, P. Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 2006, 96, 044502. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.; Lauria, A.; Penna, N.; Gaudio, R. Unconfined propeller scour in waterways: The role of flow intensity. Phys. Fluids 2022, 34, 095137. [Google Scholar] [CrossRef]
- Curulli, G.; Penna, N.; Gaudio, R. Improved formulation for the geometric characteristics of the scour hole and of the deposition mound caused by a rotating propeller jet on a mobile bed. Ocean Eng. 2023, 267, 113175. [Google Scholar] [CrossRef]
- Hong, J.H.; Chiew, Y.M.; Cheng, N.S. Scour caused by a propeller jet. J. Hydraul. Eng. 2013, 139, 1003–1012. [Google Scholar] [CrossRef]
- Wei, M.; Chiew, Y.M. Influence of toe clearance on propeller scour around an open-type quay. J. Hydraul. Eng. 2017, 143, 04017012. [Google Scholar] [CrossRef]
- Wei, M.; Chiew, Y.M. Characteristics of propeller jet flow within developing scour holes around an open quay. J. Hydraul. Eng. 2018, 144, 04018040. [Google Scholar] [CrossRef]
- Yuksel, Y.; Tan, R.I.; Çelikoglu, Y. Determining propeller scour near a quay wall. Ocean Eng. 2019, 188, 106331. [Google Scholar] [CrossRef]
- Cui, Y.; Lam, W.; Robinson, D.; Hamill, G. Temporal and spatial scour caused by external and internal counter-rotating twin-propellers using Acoustic Doppler Velocimetry. Appl. Ocean Res. 2020, 97, 102093. [Google Scholar] [CrossRef]
- Llull, T.; Mujal-Colilles, A.; Gironella, X. Twin propeller time-dependent scouring processes. Physical experiments. Ocean Eng. 2021, 236, 109461. [Google Scholar] [CrossRef]
- Mitchener, H.; Torfs, H. Erosion of Mud/Sand Mixtures. Coast. Eng. 1996, 29, 1–25. [Google Scholar] [CrossRef]
- van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef]
- Cihan, K.; Doğu, A.; Yılmaz, D.; Yüksel, A.O.; Yıldız, O.; Şahin, C. Unconfined propeller jet scour on clay/sand mixtures. Ocean Eng. 2022, 264, 112448. [Google Scholar] [CrossRef]
- Hamill, G.A.; Johnston, H.T.; Stewart, D.P. Propeller wash scour near quay walls. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 170–175. [Google Scholar] [CrossRef]
- van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 2006; Volume 1006. [Google Scholar]
- Sumer, B.M.; Fredsøe, J. The Mechanics of Scour in the Marine Environment; World Scientific: River Edge, NJ, USA, 2002. [Google Scholar]
- Wei, M.; Cheng, N.-S.; Chiew, Y.-M.; Cheng, N.-S. Recent advances in understanding propeller jet flow and its impact on scour. Phys. Fluids 2020, 32, 101303. [Google Scholar] [CrossRef]
- Wei, M.; Cheng, N.-S.; Chiew, Y.-M.; Yang, F. Vortex Evolution within Propeller Induced Scour Hole around a Vertical Quay Wall. Water 2019, 11, 1538. [Google Scholar] [CrossRef]
- Wei, M.; Chiew, Y.-M. Impingement of propeller jet on a vertical quay wall. Ocean Eng. 2019, 183, 73. [Google Scholar] [CrossRef]
- Tan, R.I.; Yuksel, Y. Seabed scour induced by a propeller jet. Ocean Eng. 2018, 160, 132–142. [Google Scholar] [CrossRef]
- Penna, N.; D’Alessandro, F.; Gaudio, R.; Tomasicchio, G.R. Three-dimensional analysis of local scouring induced by a rotating ship propeller. Ocean Eng. 2019, 188, 106294. [Google Scholar] [CrossRef]
- Ryan, D. Methods for Determining Propeller Wash Induced Scour in Harbours. Ph. D. Thesis, The Queen’s University of Belfast, Belfast, UK, 2002. [Google Scholar]
- Fuehrer, M.; Römisch, K. Effects of Modern Ship Traffic on Inland and Ocean Waterways. In Proceedings of the 24th International Navigation Congress, Leningrad, Russia; 1977; pp. 236–244. [Google Scholar]
- HEC-RAS 2D Sediment Technical Reference Manual; Hydrologic Engineering Center: Davis, CA, USA, 2023.
- Kirca, V.S.O.; Sumer, B.M.; Fredsoe, J. Influence of clay content on wave-induced liquefaction. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 04014024. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Jain, R.K. Influence of Cohesion on Incipient Motion Condition of Sediment Mixtures. Water Resour. Res. 2008, 44, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Q.; Jeng, D.; Zhang, C.; Chen, X.; Wang, L. Experimental Study on Mechanism of Wave-Induced Liquefaction of Sand-Clay Seabed. J. Mar. Sci. Eng. 2020, 8, 66. [Google Scholar] [CrossRef]
- Dey, S.; Helkjaer, A.; Sumer, B.M.; Fredsoe, J. Scour at Vertical Piles in Sand-Clay Mixture under Waves. J. Waterw. Port Coast. Ocean Eng. 2011, 137, 6. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992; World Scientific: Singapore, 1992; pp. 343–348. [Google Scholar]
- Choi, Y.; Lee, Y.; Shin, K.; Park, Y.; Lee, S. Analysis of long-term performance of full-scale reverse osmosis desalination plant using artificial neural network and tree model. Environ. Eng. Res. 2020, 25, 763–770. [Google Scholar] [CrossRef]
- Behnood, A.; Behnood, V.; Gharehveran, M.M.; Alyamac, K.E. Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Constr. Build. Mater. 2017, 142, 199–207. [Google Scholar] [CrossRef]
- Sihag, P.; Karimi, S.M.; Angelaki, A. Random Forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Appl. Water Sci. 2019, 9, 129. [Google Scholar] [CrossRef]
- Witten, H.I.; Frank, E.; Hall, M.A. Data Mining, Principal Machine Learning Tools and Techniques; Elsevier: Burlington, MA, USA, 2011. [Google Scholar]
- Wang, Y.; Witten, H.I. Inducing model trees for continuous classes. In Proceedings of the 9th European Conference on Machine Learning, Prague, Czech Republic, 23–25 April 1997. [Google Scholar]
- Cihan, K.; Yüksel, A.O.; Yıldız, O.; Doğu, A. Effect of different clay contents on propeller jet scour occurring near vertical-faced berthing structures. In Proceedings of the 10th Coastal Engineering Symposium, İzmir, Turkey, 16–17 November 2023; pp. 154–161. (In Turkish). [Google Scholar]
- Stewart, D.P.J.; Hamill, G.A.; Johnston, H.T. Velocities in a ship’s propeller wash. In Proceedings of the International Symposium on Environmental Hydraulics, Hong Kong, 16–18 December 1991; A.A. Balkema: Rotterdam, The Netherlands, 1991. [Google Scholar]









| Diameter (Dp) (m) | 0.06/0.09 |
| Blade number (b) | 4 |
| Blade Area Ratio (β) | 0.60 |
| Pitch Ratio (P) | 1.025 |
| Thrust Coefficient (Ct) | 0.35 |
| Material | Brass |
| Propeller Diameter (Dp) (m) | 6.0 |
| Propeller offset height, y0 (cm) | 10 |
| Rotation speed (rpm) | 500/750/1000 |
| Propeller efflux velocity, U0 (m/s) | 0.47/0.71/0.94 |
| F0 (*) | 7.55/11.32/15.09 |
| Mixture content, p | 0/0.05/0.10 |
| Wall clearance, Xw | 2Dp/4Dp/6Dp/8Dp |
| Propeller Diameter (Dp) (m) | 9.0 |
| Propeller offset height, y0 (cm) | 10 |
| Rotation speed (rpm) | 300/500/750 |
| Propeller efflux velocity, U0 (m/s) | 0.42/0.71/1.06 |
| F0 (*) | 6.79/11.32/16.98 |
| Mixture content, p | 0/0.05 |
| Wall clearance, Xw | 2Dp/4Dp/6Dp/8Dp |
| Nonlinear Regression Model | M5P Tree Model | |
|---|---|---|
| Coefficient of determination (R2) | 0.915 | 0.95 |
| Root mean square error (RMSE) | 0.22 | 0.18 |
| Nonlinear Regression Model | M5P Tree Model | |
|---|---|---|
| Coefficient of determination (R2) | 0.83 | 0.71 |
| Root mean square error (RMSE) | 0.34 | 0.55 |
| Reference | Equation | Notes/Validity |
|---|---|---|
| Stewart et al. [38] | Interaction between quay wall and propeller jet; RMSE = 0.7 | |
| Hamill et al. [16] | Valid for ; RMSE = 0.73; sand d50 = 0.76–3 mm | |
| Yuksel et al. [10] | Valid for ; RMSE = 0.61; sand d50 = 0.52 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cihan, K.; Yüksel Ozan, A.; Yıldız, O.; Doğu, A. Scour Caused by Propeller Jet Flow on Clay/Sand Mixture Seabed near Vertical Quay Wall. J. Mar. Sci. Eng. 2025, 13, 2051. https://doi.org/10.3390/jmse13112051
Cihan K, Yüksel Ozan A, Yıldız O, Doğu A. Scour Caused by Propeller Jet Flow on Clay/Sand Mixture Seabed near Vertical Quay Wall. Journal of Marine Science and Engineering. 2025; 13(11):2051. https://doi.org/10.3390/jmse13112051
Chicago/Turabian StyleCihan, Kubilay, Ayşe Yüksel Ozan, Osman Yıldız, and Ali Doğu. 2025. "Scour Caused by Propeller Jet Flow on Clay/Sand Mixture Seabed near Vertical Quay Wall" Journal of Marine Science and Engineering 13, no. 11: 2051. https://doi.org/10.3390/jmse13112051
APA StyleCihan, K., Yüksel Ozan, A., Yıldız, O., & Doğu, A. (2025). Scour Caused by Propeller Jet Flow on Clay/Sand Mixture Seabed near Vertical Quay Wall. Journal of Marine Science and Engineering, 13(11), 2051. https://doi.org/10.3390/jmse13112051

