From Numerical Models to AI: Evolution of Surface Drifter Trajectory Prediction
Abstract
1. Introduction
2. Application Case Studies
2.1. Prediction of Marine Pollutant Dispersion (Oil Spills, Harmful Algal Blooms, Marine Debris)
2.2. Search and Rescue and Backtracking of Floating Objects
2.3. Supporting Ocean–Atmosphere–Climate Interaction Studies
3. Surface Drifters and Trajectory Prediction
3.1. Surface Drifters
3.2. Trajectory Prediction
3.3. Key Inputs and Environmental Drivers
3.4. Evaluation Metrics
3.4.1. MAE (Mean Absolute Error)
3.4.2. MSE (Mean Squared Error)
3.4.3. RMSE (Root Mean Square Error)
3.4.4. NCLS (Normalized Cumulative Lagrangian Separation)
Interpretation
- : cumulative separation is shorter than the observed path length(better);
- : equal(neutral benchmark);
- : separation exceeds the observed path length(worse).
- : model error is smaller than the benchmark(observed path) error;
- : equal;
- : model error exceeds the benchmark.
3.4.5. Other Evaluation Metrics
- (i)
- Trajectory Error Metrics
- (ii)
- Field Validation Metrics
- (iii)
- Generative Model Metrics
4. Major Trends in Generation-Specific Research Methods
4.1. Numerical Models and Kalman-Series Assimilation (First Generation)
4.1.1. Numerical Model Applications in Oil-Spill Response
4.1.2. Probabilistic Correction Based on Drifter Density
4.1.3. Summary
4.2. Statistical and Probabilistic Models and the Expansion of Observations (Second Generation)
4.2.1. Lagrangian Validation for Diagnosing Numerical-Model Limits
4.2.2. Improving Short-Range Skill via Drifter-Based Data Assimilation
4.2.3. Summary
4.3. Introduction of Machine Learning and Deep Learning (Third Generation)
4.3.1. Machine Learning, Deep Learning, and Evolutionary Computation
4.3.2. Hybrid RNNs for Physics-Model Bias Correction
4.3.3. Summary
4.4. Rise of Machine Learning and Deep Learning (4th Generation)
4.4.1. CNN-Based Trajectory Prediction
4.4.2. Parameter Estimation and Observation-Based Wave Prediction
4.4.3. Learning-Free Hybrid Models
4.4.4. Summary
4.5. Heyday of Deep Learning and Method Diversification (5th Generation)
4.5.1. CNN-RNN and Attention Variants
4.5.2. Physics-Informed and Numerical-Model Fusion
4.5.3. Lightweight Machine Learning and Heuristic Alternatives
4.5.4. Summary
4.6. Data–AI Integration (5.5th Generation)
4.6.1. Online Deep Learning-Filter Coupled Systems
4.6.2. Cycling Integration of Deep Learning Forecast and Assimilation
4.6.3. Deep Learning Surrogates with Traditional Filters (Hybrid)
4.6.4. End-to-End Observation-Based Models: Full Replacement of Numerical Models
4.6.5. Summary
4.7. Comparative Summary Across Generations
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acronym | Official English Name | Description |
| AMSU | Advanced Microwave Sounding Unit | Microwave temperature/humidity sounder |
| AP98 | API 1998 windage formula | Empirical windage formula used in oil-spill models |
| ARGO | Array for Real-time Geostrophic Oceanography | Global profiling-float observing network |
| ARPS | Advanced Regional Prediction System | Mesoscale NWP modeling system |
| ASCAT | Advanced Scatterometer | Satellite ocean-surface wind vector retrievals |
| ATMP | Air Temperature | Near-surface air temperature |
| AVISO | Altimeter-derived Velocities Data | Satellite-altimetry-based sea surface height and velocity data |
| BT | Brightness Temperature | Satellite infrared brightness temperature |
| CESM-LME | Community Earth System Model–Last Millennium Ensemble | Paleoclimate ensemble forcing/validation set |
| CMEMS | Copernicus Marine Environment Monitoring Service | EU portal for ocean reanalysis and forecasts |
| CMA-ES | Covariance Matrix Adaptation Evolution Strategy | Evolutionary strategy for derivative-free optimization |
| CNN | Convolutional Neural Network | Convolutional neural network |
| DE | Differential Evolution | Global evolutionary optimization algorithm |
| ECMWF HRES | ECMWF High-Resolution forecast | 9 km global operational forecast |
| EnKF | Ensemble Kalman Filter | Ensemble-based Kalman family data assimilation |
| ERA5 | Fifth-generation ECMWF Re-analysis | Global atmospheric reanalysis (0.25°, hourly) |
| FuXi | FuXi Weather DL Suite | CMA deep learning forecasting/assimilation suite |
| FY-3E | FengYun-3E | Morning-orbit MetOp-class satellite (BT products) |
| GA | Genetic Algorithm | Evolutionary optimization method |
| GDAC | Global Data Assembly Center (Argo) | Hub for raw and QC’d Argo data |
| GLAD | Grand Lagrangian Deployment | Gulf of Mexico drifter field experiment (2012) |
| GLORYS | Global Ocean Reanalysis and Simulation | Mercator Ocean 0.08° ocean reanalysis |
| GLORYS12V1 | Global Ocean Reanalysis and Simulation 1/12° | Mercator Ocean 1/12° global ocean reanalysis |
| GNOME | General NOAA Operational Modeling Environment | NOAA Lagrangian model for oil spills and SAR |
| GNSS-RO | GNSS Radio Occultation | Atmospheric profiling via GNSS radio occultation |
| GRU | Gated Recurrent Unit | Lightweight recurrent neural network |
| GST | Wind Gust | Peak wind over short intervals |
| HadISD | Hadley Integrated Surface Database | Quality-controlled sub-daily station observations |
| HIRLAM | High-Resolution Limited Area Model | Limited-area NWP developed in Northern Europe |
| HRES | ECMWF High-Resolution forecast (duplicate label) | 9 km global operational forecast |
| HYCOM | Hybrid Coordinate Ocean Model | Hybrid (layer/isopycnal) coordinate ocean model |
| ICOADS | International Comprehensive Ocean–Atmosphere Data Set | Global marine surface observations |
| IDW | Inverse Distance Weighting | Distance-weighted spatial interpolation |
| IGRA | Integrated Global Radiosonde Archive | Radiosonde and pilot-balloon sounding archive |
| IHEnKF | Iterative Hybrid EnKF | Nonlinear online assimilation filter |
| IASI | Infrared Atmospheric Sounding Interferometer | Hyperspectral IR sounder for T/Q profiles |
| Kriging | Ordinary Kriging | Statistical spatial interpolation |
| LGBM | Light Gradient Boosting Machine | Lightweight gradient-boosted decision trees |
| LIM | Linear Inverse Model | Linear dynamical model fit for climate/forecasting |
| LPTM | Lagrangian Particle Tracking Model | Particle-integration-based trajectory model |
| LSTM | Long Short-Term Memory | Recurrent network for long-term dependencies |
| MAPE | Mean Absolute Percentage Error | Relative error metric |
| Metop-C | Meteorological Operational Satellite–C | EUMETSAT polar orbiter (BT, scatterometer, sounders) |
| MICOM | Miami Isopycnic Coordinate Ocean Model | Isopycnal-coordinate ocean circulation model |
| MODIS | Moderate Resolution Imaging Spectroradiometer | Medium-resolution sensor on NASA Terra/Aqua |
| MOHID | Modeling for Hydrodynamics | Portuguese 3D coastal numerical model |
| NCOM-4DVAR | Navy Coastal Ocean Model, 4DVAR | U.S. Navy four-dimensional variational ocean DA system |
| NN-GA | Neural Network, GA | GA-based optimization of NN weights/features |
| NWP | Numerical Weather Prediction | Physics-based dynamical weather forecasting |
| OpenOil | OpenOil (OpenDrift module) | Open source oil-spill trajectory modeling within OpenDrift |
| OSSE | Observing System Simulation Experiment | Simulation to assess observing/assimilation system skill |
| PAGES 2k | Past Global Changes 2000 yr proxy DB | Proxy database for 0–2000 CE climate |
| PDFs | Probability Density Functions | Probability distributions of predicted variables |
| PF | Particle Filter | Particle-weighted sampling-based data assimilation |
| PICHI | Particle-In-Cell Hydrodynamics | Lagrangian particle-in–cell hydrodynamics approach |
| PINN | Physics-Informed Neural Network | NN constrained by governing physical laws |
| PINN-SR | Physics-Informed NN–Sparse Regression | PINN with sparse regression for PDE-term estimation |
| PDE-term | Partial Differential Equation term | Term/component appearing in a PDE |
| POM | Princeton Ocean Model | Sigma-coordinate 3D ocean circulation model |
| PointPillars | PointPillars | Point-cloud encoder (pillar-based) for sparse observations |
| Prophet | Facebook Prophet | Time-series forecasting library |
| PSO | Particle Swarm Optimization | Swarm-based global search |
| RBFN | Radial Basis Function Network | Neural network using radial basis functions |
| RF | Random Forest | Bagged ensemble of decision trees |
| ROMS | Regional Ocean Modeling System | High-resolution sigma-coordinate ocean model |
| RTTOV | Radiative Transfer for TOVS | Fast radiative transfer operator for DA/observation operators |
| SRU | Simple Recurrent Unit | Lightweight recurrent neural network cell |
| SST | Sea Surface Temperature | Temperature of the ocean surface layer |
| SST-GCNN | Sea Surface Temp Graph CNN | Graph-CNN regressor for SST fields |
| SVR | Support Vector Regression | Kernel-based regression |
| SVR-PM | Support Vector Regression–Parameterization Method | SVR with parameterization to infer fixed coefficients |
| TSFFAM | Two-Stage Feature Fusion Attention Module | Attention block for fusing spatiotemporal features |
| T2M | 2-m Temperature | Near-surface (2 m) air temperature |
| WAM | EC Wave Model | Third-generation spectral wave model |
| WDF | Wind Drift Factor | Coefficient for wind-induced drift |
| WDIR | Wind Direction | Direction of near-surface wind (meteorological) |
| WSPD | Wind Speed | Magnitude of near-surface wind |
References
- Global Drifter Program. 2025. Available online: https://www.aoml.noaa.gov/global-drifter-program/ (accessed on 2 October 2025).
- Global Drifter Program. Hourly Drifter Data—Release Notes Version 2.01. 2023. Available online: https://www.aoml.noaa.gov/phod/gdp/hourly_data_release_notes.php (accessed on 2 October 2025).
- Lumpkin, R.; Özgökmen, T.; Centurioni, L. Advances in the application of surface drifters. Annu. Rev. Mar. Sci. 2017, 9, 59–81. [Google Scholar] [CrossRef]
- National Centers for Coastal Ocean Science. Harmful Algal Bloom (HAB) Forecasting. 2025. Available online: https://coastalscience.noaa.gov/project/harmful-algal-bloom-hab-forecasting/ (accessed on 2 October 2025).
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil spill modeling: A critical review on current trends, perspectives, and challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- Hardesty, B.D.; Harari, J.; Isobe, A.; Lebreton, L.; Maximenko, N.; Potemra, J.; Van Sebille, E.; Vethaak, A.D.; Wilcox, C. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 2017, 4, 30. [Google Scholar] [CrossRef]
- Holm, H.H.; Sætra, M.L.; van Leeuwen, P.J. Massively parallel implicit equal-weights particle filter for ocean drift trajectory forecasting. J. Comput. Phys. X 2020, 6, 100053. [Google Scholar] [CrossRef]
- García-Ladona, E.; Font, J.; Río, E.d.; Julià, A.; Salat, J.; Chic, O.; Orfila, A.; Alvarez, A.; Basterretxea, G.; Vizoso, G.; et al. The use of surface drifting floats in the monitoring of oil spills. The Prestige case. In Proceedings of the International Oil Spill Conference, Miami Beach, FL, USA, 15–19 May 2005; American Petroleum Institute: Washington, DC, USA, 2005; Volume 2005, pp. 613–617. [Google Scholar] [CrossRef]
- Abascal, A.J.; Castanedo, S.; Méndez, F.J.; Medina, R.; Losada, I.n.J. Calibration of a Lagrangian transport model using drifting buoys deployed during the Prestige oil spill. J. Coast. Res. 2009, 25, 80–90. [Google Scholar] [CrossRef]
- Breivik, Ø.; Allen, A.A. An operational search and rescue model for the Norwegian Sea and the North Sea. J. Mar. Syst. 2008, 69, 99–113. [Google Scholar] [CrossRef]
- Breivik, Ø.; Bekkvik, T.C.; Wettre, C.; Ommundsen, A. BAKTRAK: Backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean. Dyn. 2012, 62, 239–252. [Google Scholar] [CrossRef]
- Lumpkin, R.; Pazos, M. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics; Griffa, A., Kirwan, A.D., Jr., Mariano, A.J., Özgökmen, T.M., Rossby, H.T., Eds.; Cambridge University Press: Cambridge, UK, 2007; Chapter 2; pp. 39–67. [Google Scholar] [CrossRef]
- Molcard, A.; Piterbarg, L.I.; Griffa, A.; Özgökmen, T.M.; Mariano, A.J. Assimilation of drifter observations for the reconstruction of the Eulerian circulation field. J. Geophys. Res. Ocean. 2003, 108, 3056. [Google Scholar] [CrossRef]
- Sun, L.; Penny, S.G. Lagrangian Data Assimilation of Surface Drifters in a Double-Gyre Ocean Model Using the Local Ensemble Transform Kalman Filter. Mon. Weather. Rev. 2019, 147, 4533–4551. [Google Scholar] [CrossRef]
- Niiler, P.P.; Paduan, J.D. Wind-driven motions in the northeast Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr. 1995, 25, 2819–2830. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Consortium, H. HYCOM: Hybrid Coordinate Ocean Model. 2025. Available online: https://www.hycom.org (accessed on 2 October 2025).
- Copernicus Marine Environment Monitoring Service (CMEMS). GLORYS: Global Ocean Reanalysis. 2025. Available online: https://marine.copernicus.eu/ (accessed on 2 October 2025).
- Bertin, S.; Sentchev, A.; Alekseenko, E. Fusion of Lagrangian drifter data and numerical model outputs for improved assessment of turbulent dispersion. Ocean. Sci. 2024, 20, 965–980. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H. Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation. J. Geophys. Res. Ocean. 2011, 116, C09013. [Google Scholar] [CrossRef]
- Botvynko, D.; Granero-Belinchon, C.; Gennip, S.v.; Benzinou, A.; Fablet, R. Deep Learning for Lagrangian Drift Simulation at The Sea Surface. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, X.; Zhong, X.; Xu, X.; Huang, Y.; Li, H.; Neelin, J.D.; Chen, D.; Feng, J.; Han, W.; Wu, L.; et al. A data-to-forecast machine learning system for global weather. Nat. Commun. 2025, 16, 6658. [Google Scholar] [CrossRef]
- Adrian, M.; Sanz-Alonso, D.; Willett, R. Data assimilation with machine learning surrogate models: A case study with FourCastNet. Artif. Intell. Earth Syst. 2025, 4, e240050. [Google Scholar] [CrossRef]
- Sun, H.; Lei, L.; Liu, Z.; Ning, L.; Tan, Z.M. An online paleoclimate data assimilation with a deep learning-based network. J. Adv. Model. Earth Syst. 2025, 17, e2024MS004675. [Google Scholar] [CrossRef]
- Lyu, X.; Han, H.; Ren, P.; Grecos, C. DiffusionLSTM: A Framework for Image Sequence Generation and Its Application to Oil Spill Monitoring and Prediction. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. Available online: https://proceedings.neurips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed on 2 October 2025).
- Maslej, N.; Fattorini, L.; Perrault, R.; Parli, V.; Reuel, A.; Brynjolfsson, E.; Etchemendy, J.; Ligett, K.; Lyons, T.; Manyika, J.; et al. Artificial Intelligence Index Report 2024. arXiv 2024, arXiv:2405.19522. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017); Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008. Available online: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 2 October 2025).
- Allen, A.; Markou, S.; Tebbutt, W.; Requeima, J.; Bruinsma, W.P.; Andersson, T.R.; Herzog, M.; Lane, N.D.; Chantry, M.; Hosking, J.S.; et al. End-to-end data-driven weather prediction. Nature 2025, 641, 1172–1179. [Google Scholar] [CrossRef]
- Özgökmen, T.M.; Griffa, A.; Mariano, A.J.; Piterbarg, L.I. On the predictability of Lagrangian trajectories in the ocean. J. Atmos. Ocean. Technol. 2000, 17, 366–383. [Google Scholar] [CrossRef]
- Castellari, S.; Griffa, A.; Özgökmen, T.M.; Poulain, P.M. Prediction of particle trajectories in the Adriatic Sea using Lagrangian data assimilation. J. Mar. Syst. 2001, 29, 33–50. [Google Scholar] [CrossRef]
- Global Drifter Program. 2024. Available online: https://www.aoml.noaa.gov/phod/gdp/index.php (accessed on 11 July 2025).
- Huntley, H.S.; Lipphardt, B.; Kirwan, A. Lagrangian predictability assessed in the East China Sea. Ocean. Model. 2011, 36, 163–178. [Google Scholar] [CrossRef]
- Muscarella, P.; Carrier, M.J.; Ngodock, H.; Smith, S.; Lipphardt, B.L.J.; Kirwan, A.D.J.; Huntley, H.S. Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Mon. Weather. Rev. 2015, 143, 1822–1832. [Google Scholar] [CrossRef]
- Nam, Y.W.; Cho, H.Y.; Kim, D.Y.; Moon, S.H.; Kim, Y.H. An Improvement on Estimated Drifter Tracking through Machine Learning and Evolutionary Search. Appl. Sci. 2020, 10, 8123. [Google Scholar] [CrossRef]
- Aksamit, N.O.; Sapsis, T.P.; Haller, G. Machine-Learning Ocean Dynamics from Lagrangian Drifter Trajectories. arXiv 2019, arXiv:1909.12895. [Google Scholar]
- Grossi, M. Ocean Trajectory Prediction Using Machine Learning Tools. Ph.D. Thesis, University of Miami, Miami, FL, USA, 2021. Available online: https://scholarship.miami.edu/esploro/outputs/doctoral/Ocean-Trajectory-Prediction-Using–Machine-Learning/991031607062902976 (accessed on 2 October 2025).
- Zeng, F.; Ou, H.; Wu, Q. Short-Term Drift Prediction of Multi-Functional Buoys in Inland Rivers Based on Deep Learning. Sensors 2022, 22, 5120. [Google Scholar] [CrossRef]
- Jenkins, J.; Paiement, A.; Ourmières, Y.; Le Sommer, J.; Verron, J.; Ubelmann, C.; Glotin, H. A DNN framework for learning Lagrangian drift with uncertainty. Appl. Intell. 2023, 53, 23729–23739. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Mu, L. Parameterization modeling for wind drift factor in oil spill drift trajectory simulation based on machine learning. Front. Mar. Sci. 2023, 10, 1222347. [Google Scholar] [CrossRef]
- Domala, V.; Lee, W.; Kim, T.w. Wave data prediction with optimized machine learning and deep learning techniques. J. Comput. Des. Eng. 2022, 9, 1107–1122. [Google Scholar] [CrossRef]
- Pan, Q.; Lin, S.; Lu, W.; Wang, Z.; Wu, L.; Zou, Y.; Ai, B.; Zhong, Z. Space-Air-Sea-Ground Integrated Monitoring Network-Based Maritime Transportation Emergency Forecasting. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2843–2852. [Google Scholar] [CrossRef]
- Lee, H.C.; Cho, H.Y.; Kim, Y.H. A genetic algorithm for matching oil spill particles. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 273–274. [Google Scholar] [CrossRef]
- Ning, P.; Zhang, D.; Zhang, X.; Zhang, J.; Liu, Y.; Jiang, X.; Zhang, Y. Argo Buoy Trajectory Prediction: Multi-Scale Ocean Driving Factors and Time–Space Attention Mechanism. J. Mar. Sci. Eng. 2024, 12, 323. [Google Scholar] [CrossRef]
- Botvynko, D.; Granero-Belinchon, C.; van Gennip, S.; Benzinou, A.; Fablet, R. Neural prediction of Lagrangian drift trajectories on the sea surface. Artif. Intell. Earth Syst. 2025, 4, e240052. [Google Scholar] [CrossRef]
- Song, M.; Hu, W.; Liu, S.; Chen, S.; Fu, X.; Zhang, J.; Li, W.; Xu, Y. Developing an Artificial Intelligence-Based Method for Predicting the Trajectory of Surface Drifting Buoys Using a Hybrid Multi-Layer Neural Network Model. J. Mar. Sci. Eng. 2024, 12, 958. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Jiang, Y.; Wang, C.; Wang, N.; Zhang, F.; Zhang, Z. DriftNet: Target-area differential attention mechanism for marine drifter trajectory prediction. Eng. Appl. Comput. Fluid Mech. 2025, 19, 2563083. [Google Scholar] [CrossRef]
- Beiser, F. Local Drift Forecasting with Simplified Ocean Models and Multi-Level Data Assimilation. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2024. Available online: https://hdl.handle.net/11250/3133514 (accessed on 2 October 2025).
- Fajardo-Urbina, J.M.; Liu, Y.; Georgievska, S.; Gräwe, U.; Clercx, H.J.; Gerkema, T.; Duran-Matute, M. Efficient deep learning surrogate method for predicting the transport of particle patches in coastal environments. Mar. Pollut. Bull. 2024, 209, 117251. [Google Scholar] [CrossRef]
- Bang, C.; Altaher, A.S.; Zhuang, H.; Altaher, A.; Srinivasan, A.; Cherubin, L. Physics-informed neural networks to reconstruct surface velocity field from drifter data. Front. Mar. Sci. 2025, 12, 1547995. [Google Scholar] [CrossRef]
- Kim, T.H.; Moon, S.H.; Kim, Y.H. Evolutionary Ensemble for Predicting Drifter Trajectories Based on Genetic Feature Selection. In Proceedings of the GECCO’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion; Association for Computing Machinery: New York, NY, USA, 2024; pp. 675–678. [Google Scholar] [CrossRef]
- Tombul, S.; Tükenmez, E.; Öksüz, M.; Altıok, H. Predicting the Trajectories of Drifting Objects in the Eastern Mediterranean Sea. Turk. J. Fish. Aquat. Sci. 2023, 24, TRJFAS23787. [Google Scholar] [CrossRef]
- Brolly, M.T. Inferring ocean transport statistics with probabilistic neural networks. J. Adv. Model. Earth Syst. 2023, 15, e2023MS003718. [Google Scholar] [CrossRef]
- Lin, H.; Yu, W.; Lian, Z. Influence of Ocean Current Features on the Performance of Machine Learning and Dynamic Tracking Methods in Predicting Marine Drifter Trajectories. J. Mar. Sci. Eng. 2024, 12, 1933. [Google Scholar] [CrossRef]



| Generation | Representative Metrics | Rationale |
|---|---|---|
| 1st–2nd Gen | MAE, RMSE | Focused on direct position error in numerical and early assimilation studies. |
| 3rd Gen | NCLS, Skill Score | Emphasized cumulative separation and long-horizon predictive stability in ML and DL applications. |
| 4th–5th Gen | Liu Index, ACC, LTS | Captured spatiotemporal consistency, flow memory, and large-scale circulation validation for CNN and attention-based models. |
| 5.5th Gen | SSIM, FID | Addressed realism and distributional fidelity of AI-driven end-to-end generative or surrogate models. |
| Authors (Year) | Data/Region | Models/Methods | Key Findings/Applications |
|---|---|---|---|
| Garcia-Ladona et al. (2005) [8] | Prestige spill: in situ buoys and satellite data | GNOME, PICHI; HIRLAM, ARPS, WAM | Manual calibration of drag coefficients improved forecast accuracy; demonstrated feasibility for real-time spill response |
| Özgökmen et al. (2000) [32] | MICOM double-gyre virtual buoys | AR(1) Gauss–Markov and Kalman filter; assimilation of neighbors | RMSE ; theoretical validation |
| Castellari et al. (2001) [33] | Adriatic Sea observed drifters | Gauss–Markov and Kalman filter | Increasing reduced 24 h RMSE; improved short-term coastal trajectory forecasts |
| Authors (Year) | Data/Region | Models/Methods | Key Results/Objectives |
|---|---|---|---|
| Huntley et al. (2011) [35] | SVP drifters and EAS16 (Kuroshio front and shelf) | Sensitivity to tides and resolution via Lagrangian metrics | Forecast skill degraded when temporal resolution > 8 h; retained only within 24–36 h |
| Muscarella et al. (2015) [36] | Gulf of Mexico drifter positions and velocities plus SST, ARGO and XBT | NCOM–4DVAR (4-day cycle) | Assimilating drifter velocities ⇒ improved Loop Current ring depiction; substantially slower growth of trajectory error |
| Holm et al. (2020) [7] | Synthetic drifter and buoy velocities | Shallow-water model and IEWPF (GPU) | Even 0.1% observational coverage reduced 12 h RMSE; most pronounced improvements in turbulent regimes |
| Authors (Year) | Data/Region | Models/Methods | Key Results/Objectives |
|---|---|---|---|
| Nam et al. (2020) [37] | Korean coastal drifters (2015–2016); wind; currents | SVR, GP, RBFN, LSTM; DE, PSO and CMA-ES | RBFN MAE 0.0556 (−35%), LSTM NCLS 0.8762 (%) → outperformed MOHID baseline |
| Aksamit et al. (2019) [38] | AVISO velocities and ERA5 winds (North Atlantic) | Maxey–Riley physics model with LSTM correction | RMSE↓ and skill score↑ in submesoscale regimes; demonstrated the effectiveness of the hybrid approach |
| Authors (Year) | Data/Region | Models/Methods | Key Results/Objectives |
|---|---|---|---|
| Botvynko et al. (2023) [21] | GLORYS12V1; GDP drifters | DriftNet (CNN-ConvLSTM) | RMSE and Liu index improved; potential for velocity inverse problem |
| Grossi (2021) [39] | GLAD drifters (HYCOM synthetic trajectories used earlier for ANN tests) | SST-GCNN | Day-5 forecast error ≈ 50 ± 35 km, 25 km lower than ARIMA |
| Zeng et al. (2022) [40] | Chinese coastal buoys | ResNet-GRU-Attention | MAE lower than GRU and LSTM |
| Jenkins et al. (2023) [41] | PDF trajectories from numerical velocities | U-Net (PDFt+1 ← PDFt) | Learned distributional evolution without ensembles |
| Liu et al. (2023) [42] | GDP undrogued buoys | SVR-PM (WDF) | More accurate than fixed coefficient schemes; higher SAR overlap |
| Domala et al. (2022) [43] | NOAA buoy wave and meteorology | XGBoost, etc. (comparison) | XGBoost best in , RMSE, MAE |
| Pan et al. (2021) [44] | Sanchi incident; SAR and buoy; ROMS, WRF and HYCOM | Real-time ensemble Lagrangian | Observation-forecast integration; highest precision |
| Lee et al. (2020) [45] | 32k-particle simulation | PCA and GA | Mean position error 0.053° (3.2%) |
| Authors (Year) | Data/Region | Models/Methods | Key Results |
|---|---|---|---|
| Ning et al. (2024) [46] | Argo GDAC; AVISO altimetry | SRU; TSFFAM attention | Reduced position RMSE vs. LSTM |
| Botvynko et al. (2025) [47] | GLORYS12V1; synthetic and observed trajectories | CNN-ConvLSTM | Outperformed prior numerical and DL methods |
| Song et al. (2024) [48] | GDP drifters | CNN-BiGRU–Attention | Higher and lower RMSE than BiLSTM and Transformer |
| Chen et al. (2025) [49] | Taiwan Strait; ROMS reanalysis and observed drifters | TADA and DDL | >50% improvement in vs. physical and ML baselines |
| Lyu et al. (2024) [25] | MODIS NIR; GLORYS; OpenOil | DiffusionLSTM; OpenOil | Higher SSIM, lower FID, 2.5 km error reduction |
| Beiser et al. (2024) [50] | NorKyst; drifters | Shallow-water ensemble; EnKF and PF | Probabilistic drift forecasts and quantified uncertainty |
| Fajardo-Urbina et al. (2024) [51] | Dutch Wadden Sea; GETM-based residual transport (A, D) | ConvLSTM surrogate with simplified LPTM | Tidal-cycle advection/dispersion predicted in seconds; 30× faster than LPTM |
| Bang et al. (2024) [52] | HYCOM synthetic drifters | PINN-sparse regression | Lower RMSE vs. IDW and Kriging; higher MS-SSIM |
| Kim et al. (2024) [53] | GDP and OpenDrift | GA-selected 6 features → LR, SVR and LGBM ensemble | >75% accuracy improvement over baseline |
| Tombul et al. (2023) [54] | ERA5 winds; CMEMS currents | Wind-current weighted moving average | Simple implementation; error ≤ 30 km |
| Authors (Year) | Data/Region | Models/Methods | Key Results/Objectives |
|---|---|---|---|
| Sun et al. (2025) [24] | CESM-LME simulations; PAGES 2k proxies (global) | CNN surrogate; IHEnKF online DL–filter coupling | Higher CE and lower RMSE vs. LIM; larger gains where proxies are sparse; complements low-density data |
| Sun et al. (2025) [22] | FY-3E and Metop-C BT; GNSS-RO (global) | PointPillars encoder; FuXi forecaster cycling DL forecast–assimilation | Z500 ACC 0.6 duration 9.25 → 9.50 days; T2M ACC > 0.6 (10 days); reduced compute cost |
| Adrian et al. (2025) [23] | ERA5 background; downsampled obs (global) | FourCastNet background; 3DVAR DL surrogate with traditional filter | Year-long cycling: RMSE↓, ACC↑; 0–48 h forecast errors reduced; better extreme-event initialization |
| Allen et al. (2025) [31] | Satellites (ASCAT, AMSU and IASI, etc.); surface (HadISD, ICOADS and IGRA) (global) | End-to-end observation-based encoder–processor–decoder | Global 1.5° and site forecasts; lower RMSE than GFS; near-HRES skill; observation-only forecasting |
| Generation | Advantages | Limitations | Data Requirements |
|---|---|---|---|
| 1st | Physically consistent, interpretable | Error growth in sparse regions, sensitive to initial conditions | Drifter coverage, basic wind/wave/current forcing |
| 2nd | Probabilistic forecasts, uncertainty quantification | Limited long-range skill, dependent on observation density | Dense drifter networks, ensemble/statistical models |
| 3rd | Improved short-range accuracy with ML/DL | Black-box, weak generalization across regions | Drifter time series with reanalysis (e.g., ERA5, HYCOM) |
| 4th | Hybrid CNN/attention with residual correction | High computational cost, data-intensive | Fusion of reanalysis products and in situ observations |
| 5th | High short-range accuracy, scalable DL | Risk of overfitting, limited physical constraints | Large multi-source datasets (drifters, reanalysis, satellite altimetry, winds, waves) |
| 5.5th | End-to-end pipeline integrating obs.–assim.–forecast | Still emerging, requires massive/diverse data | Multi-source satellites (GNSS-RO, radar) and drifters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kwon, S.; Kim, Y.-H. From Numerical Models to AI: Evolution of Surface Drifter Trajectory Prediction. J. Mar. Sci. Eng. 2025, 13, 1928. https://doi.org/10.3390/jmse13101928
Kim T, Kwon S, Kim Y-H. From Numerical Models to AI: Evolution of Surface Drifter Trajectory Prediction. Journal of Marine Science and Engineering. 2025; 13(10):1928. https://doi.org/10.3390/jmse13101928
Chicago/Turabian StyleKim, Taehun, Seulhee Kwon, and Yong-Hyuk Kim. 2025. "From Numerical Models to AI: Evolution of Surface Drifter Trajectory Prediction" Journal of Marine Science and Engineering 13, no. 10: 1928. https://doi.org/10.3390/jmse13101928
APA StyleKim, T., Kwon, S., & Kim, Y.-H. (2025). From Numerical Models to AI: Evolution of Surface Drifter Trajectory Prediction. Journal of Marine Science and Engineering, 13(10), 1928. https://doi.org/10.3390/jmse13101928

