A Data-Driven Method for Ship Route Planning Under Dynamic Environments
Abstract
1. Introduction
1.1. Multi-Objective Path Planning
1.2. Path Planning Based on AIS Data
1.3. Path Planning Considering Weather Conditions
2. Problem Statement
2.1. Trajectory Point Recognition Based on AIS Data
2.2. Navigation Constraints Under Weather Routing
2.3. Speed-Engine Power Under Multi-Object Navigation
3. Data Source and Grid Map Construction
4. Method
4.1. Data Processing Method
- Recovery of Missing Data and Time Synchronisation: AIS data may deviate from the actual sensor measurements due to constant environmental changes. These deviations can result in variations in the AIS data broadcast frequency, leading to data loss and other issues. Additionally, AIS data from different sensors may not be synchronised in terms of time. Therefore, it is necessary to integrate inconsistent data formats from different AIS devices to provide unified data support for subsequent route planning. To repair the data, trajectory interpolation is used to restore missing AIS data.
- Outlier Removal: Errors during data transmission from sensors can result in the generation of outliers or noise caused by factors such as equipment malfunctions, unexpected events, and other disturbances. Therefore, an algorithm is needed to establish relationships between data points and eliminate noisy points. The OPTICS algorithm can discover clustering structures based on the density relationships between data points and identify outliers by detecting anomalous points and improving data quality and reliability.
4.1.1. AIS Trajectory Processing Interpolation
4.1.2. OPTICS Clustering Algorithm
4.2. Extract Turning Points
4.3. Multi-Objective Route Optimisation Method
4.3.1. Comparison of Multiple Algorithms
4.3.2. Node Vector Transformation
4.3.3. Cost Functions
4.3.4. Matching Mechanism Between the Dynamic Environment and the Grids
5. Case Studies and Discussion
5.1. Optimisation of Route and Model Parameters
5.2. Multi-Objective Path Optimisation
5.3. Real-Time Power Comparison Under the Optimal Path
5.4. Comparison of Trajectory Points Based on AIS Data
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Wang, T.; Liu, S. A Review of Path Planning Methods for Marine Autonomous Surface Vehicles. J. Mar. Sci. Eng. 2024, 12, 833. [Google Scholar] [CrossRef]
- Park, M.-H.; Yeo, S.; Kim, J.-H.; Choi, J.-H.; Lee, W.-J. Comprehensive Review on Recent Progress in Renewable and Sustainable Energy Applications in Shipping Industry, and Suggestions for Future Developments. Renew. Sustain. Energy Rev. 2026, 225, 116152. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, L.; Zheng, J. Emission Control Areas: More or Fewer? Transp. Res. D Transp. Environ. 2020, 84, 102349. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Review of the IMO Initiatives for Ship Energy Efficiency and Their Implications. J. Mar. Sci. Appl. 2023, 22, 662–680. [Google Scholar] [CrossRef]
- Xia, J.; Wang, K.; Wang, S. Drone Scheduling to Monitor Vessels in Emission Control Areas. Transp. Res. B Methodol. 2019, 119, 174–196. [Google Scholar] [CrossRef]
- Fan, A.; Wang, J.; He, Y.; Perčić, M.; Vladimir, N.; Yang, L. Decarbonising Inland Ship Power System: Alternative Solution and Assessment Method. Energy 2021, 226, 120266. [Google Scholar] [CrossRef]
- Zis, T.P.V.; Cullinane, K.; Ricci, S. Economic and Environmental Impacts of Scrubbers Investments in Shipping: A Multi-Sectoral Analysis. Marit. Policy Manag. 2022, 49, 1097–1115. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Spatial Correlation Analysis of near Ship Collision Hotspots with Local Maritime Traffic Characteristics. Reliab. Eng. Syst. Saf. 2021, 209, 107463. [Google Scholar] [CrossRef]
- Fang, S.; Xu, Y.; Wang, H.; Shang, C.; Feng, X. Robust Operation of Shipboard Microgrids With Multiple-Battery Energy Storage System Under Navigation Uncertainties. IEEE Trans. Veh. Technol. 2020, 69, 10531–10544. [Google Scholar] [CrossRef]
- Li, Y.; Cui, J.; Zhang, X.; Yang, X. A Ship Route Planning Method under the Sailing Time Constraint. J. Mar. Sci. Eng. 2023, 11, 1242. [Google Scholar] [CrossRef]
- De, A.; Wang, J.; Tiwari, M.K. Fuel Bunker Management Strategies Within Sustainable Container Shipping Operation Considering Disruption and Recovery Policies. IEEE Trans. Eng. Manag. 2021, 68, 1089–1111. [Google Scholar] [CrossRef]
- Vettor, R.; Guedes Soares, C. Development of a Ship Weather Routing System. Ocean Eng. 2016, 123, 1–14. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Park, H.; Lee, S.; Kim, E. Have Emission Control Areas (ECAs) Harmed Port Efficiency in Europe? Transp. Res. D Transp. Environ. 2018, 58, 39–53. [Google Scholar] [CrossRef]
- Ma, W.; Li, P.; Zhao, J. Joint Optimization of Ramp Closure, Lane Reorganization, and Signal Control Strategies for Freeway Mainline Closure Owing to Construction Zones. Transp. B Transp. Dyn. 2023, 11, 2231158. [Google Scholar] [CrossRef]
- Skoglund, L.; Kuttenkeuler, J.; Rosén, A.; Ovegård, E. A Comparative Study of Deterministic and Ensemble Weather Forecasts for Weather Routing. J. Mar. Sci. Technol. 2015, 20, 429–441. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Yuan, Q.; Lou, N.; Qiu, S.; Bo, L.; Chen, X. Application of a Deep Learning-Based Discrete Weather Data Continuousization Model in Ship Route Optimization. Ocean. Eng. 2023, 285, 115435. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, X.; Wang, J.; Feng, H.; Tengecha, N.A. Traffic Organization Service for Maritime Autonomous Surface Ships (MASS) with Different Degrees of Autonomy. J. Mar. Sci. Eng. 2022, 10, 1889. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Guo, M.; Liu, Y. A Novel Ship Trajectory Clustering Analysis and Anomaly Detection Method Based on AIS Data. Ocean Eng. 2023, 288, 116082. [Google Scholar] [CrossRef]
- Brynolf, S.; Magnusson, M.; Fridell, E.; Andersson, K. Compliance Possibilities for the Future ECA Regulations through the Use of Abatement Technologies or Change of Fuels. Transp. Res. D Transp. Environ. 2014, 28, 6–18. [Google Scholar] [CrossRef]
- Jin, F.; Cheng, B.; Luo, W. Data-Driven Based Path Planning of Underwater Vehicles Under Local Flow Field. J. Mar. Sci. Eng. 2024, 12, 2147. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Zhou, Z.; Zhao, J.; Wang, S.; Chen, X. Multiship Speed Measurement Method Based on Machine Vision and Drone Images. IEEE Trans. Instrum. Meas. 2023, 72, 2513112. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, Y.; Zhang, J.; He, Y.; Yan, K.; Yan, B. A Novel MP-LSTM Method for Ship Trajectory Prediction Based on AIS Data. Ocean Eng. 2021, 228, 108956. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-Based Deep Learning Framework for Regional Ship Behavior Prediction. Reliab. Eng. Syst. Saf. 2021, 215, 107819. [Google Scholar] [CrossRef]
- Gu, Q.; Zhen, R.; Liu, J.; Li, C. An Improved RRT Algorithm Based on Prior AIS Information and DP Compression for Ship Path Planning. Ocean Eng. 2023, 279, 114595. [Google Scholar] [CrossRef]
- Park, J.; Choi, M. A K-Means Clustering Algorithm to Determine Representative Operational Profiles of a Ship Using AIS Data. J. Mar. Sci. Eng. 2022, 10, 1245. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Lu, W. Anomaly Detection and Restoration for AIS Raw Data. Wirel. Commun. Mob. Comput. 2022, 2022, 5954483. [Google Scholar] [CrossRef]
- Sang, H.; You, Y.; Sun, X.; Zhou, Y.; Liu, F. The Hybrid Path Planning Algorithm Based on Improved A* and Artificial Potential Field for Unmanned Surface Vehicle Formations. Ocean Eng. 2021, 223, 108709. [Google Scholar] [CrossRef]
- Vettor, R.; Guedes Soares, C. Rough Weather Avoidance Effect on the Wave Climate Experienced by Oceangoing Vessels. Appl. Ocean Res. 2016, 59, 606–615. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M.; Furcy, D. Lifelong Planning A∗. Artif. Intell. 2004, 155, 93–146. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M. Fast Replanning for Navigation in Unknown Terrain. IEEE Trans. Robot. 2005, 21, 354–363. [Google Scholar] [CrossRef]
- Saranya, C.; Unnikrishnan, M.; Ali, S.A.; Sheela, D.S.; Lalithambika, D.V.R. Terrain Based D∗ Algorithm for Path Planning. IFAC-Pap. 2016, 49, 178–182. [Google Scholar] [CrossRef]
- Xing, B.; Yu, M.; Liu, Z.; Tan, Y.; Sun, Y.; Li, B. A Review of Path Planning for Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2023, 11, 1556. [Google Scholar] [CrossRef]
- Luo, J.; Zhuang, J.; Jin, M.; Xu, F.; Su, Y. An Energy-Efficient Path Planning Method for Unmanned Surface Vehicle in a Time-Variant Maritime Environment. Ocean Eng. 2024, 301, 117544. [Google Scholar] [CrossRef]
- Wang, H.; Lang, X.; Mao, W. Voyage Optimization Combining Genetic Algorithm and Dynamic Programming for Fuel/Emissions Reduction. Transp. Res. D Transp. Environ. 2021, 90, 102670. [Google Scholar] [CrossRef]
- Prpić-Oršić, J.; Vettor, R.; Faltinsen, O.M.; Guedes Soares, C. The Influence of Route Choice and Operating Conditions on Fuel Consumption and CO2 Emission of Ships. J. Mar. Sci. Technol. 2016, 21, 434–457. [Google Scholar] [CrossRef]
- Liu, H.; Shan, Q.; Cao, Y.; Xu, Q. Global Path Planning of Unmanned Surface Vehicle in Complex Sea Areas Based on Improved Streamline Method. J. Mar. Sci. Eng. 2024, 12, 1324. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G.; Liu, J. Dynamic Energy-Efficient Path Planning of Unmanned Surface Vehicle under Time-Varying Current and Wind. J. Mar. Sci. Eng. 2022, 10, 759. [Google Scholar] [CrossRef]
- Spyrou-Sioula, K.; Kontopoulos, I.; Kaklis, D.; Makris, A.; Tserpes, K.; Eirinakis, P.; Oikonomou, F. AIS-Enabled Weather Routing for Cargo Loss Prevention. J. Mar. Sci. Eng. 2022, 10, 1755. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Data Mining Approach to Shipping Route Characterization and Anomaly Detection Based on AIS Data. Ocean Eng. 2020, 198, 106936. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J.; Tian, W.; Guedes Soares, C. A Multi-Objective Ship Voyage Optimisation Method within Sulfur Emission Control Zones. Ocean Eng. 2025, 319, 120192. [Google Scholar] [CrossRef]
- Sha, H.; Zhen, H.; Zhu, L. The Whole Process Route Planning Algorithm Based on AIS Spatio-Temporal Big Data Analysis. Ships Offshore Struct. 2024, 20, 912–926. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. Sigmod Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature. Cartographica 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J.; Wu, D.; Tian, W. A Novel Path Planning Algorithm for Ships in Dynamic Current Environments. Ocean Eng. 2023, 288, 116091. [Google Scholar] [CrossRef]
- Wang, H.; Mao, W.; Eriksson, L. A Three-Dimensional Dijkstra’s Algorithm for Multi-Objective Ship Voyage Optimization. Ocean Eng. 2019, 186, 106131. [Google Scholar] [CrossRef]
- Lang, X.; Mao, W. A Semi-Empirical Model for Ship Speed Loss Prediction at Head Sea and Its Validation by Full-Scale Measurements. Ocean Eng. 2020, 209, 107494. [Google Scholar] [CrossRef]
- Acciaro, M. Real Option Analysis for Environmental Compliance: LNG and Emission Control Areas. Transp. Res. D Transp. Environ. 2014, 28, 41–50. [Google Scholar] [CrossRef]
- Ma, W.; Lu, T.; Ma, D.; Wang, D.; Qu, F. Ship Route and Speed Multi-Objective Optimization Considering Weather Conditions and Emission Control Area Regulations. Marit. Policy Manag. 2021, 48, 1053–1068. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M. Real-Time Adaptive A*. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8 May 2006; ACM: New York, NY, USA, 2006; pp. 281–288. [Google Scholar]

















| MMSI | Vessel Name | IMO | Vessel Type |
|---|---|---|---|
| 538007953 | IONIC ALTHEA | IMO9728435 | Crude Oil Tanker |
| Length | Width | Height | Draft |
| 250 | 44 | 42.08 | 8.3 |
| Tonnage | Engine power | ||
| 63,771 | 11,730 |
| Parameters | Value | Unit |
|---|---|---|
| 0.85 | ||
| L | 250 | m |
| B | 44 | m |
| H | 42.08 | m |
| Design draught | 10.98 | m |
| 11,000 | m2 | |
| 1851.52 | m2 | |
| 10,520 | m2 | |
| C0 | 0.8 | |
| 1000 | kg/m3 | |
| 1.225 | kg/m3 | |
| 1.2 | ||
| 0.9 | ||
| 0.9 | ||
| SFOC at 85%MCR | 173 | (g/kWh) |
| PMGO | 547 | $/ton |
| PLSFO | 585 | $/ton |
| EFI | 1.81 | g/kWh |
| EFJ | 9.05 | g/kWh |
| Number | Start Time | Method | Weight/[w1, w2, w3] | Distance Cost (km) | Economic Cost ($) | Emission Cost (Ton) |
|---|---|---|---|---|---|---|
| 1 | 05-03 | Actual path | / | 857.25 | 21,930.74 | 354.11 |
| 2 | 05-03 | A* path | / | 826.40 | 18,829.47 | 292.49 |
| 3 | 05-03 | RTAA* path | / | 857.88 | 21,851.60 | 361.53 |
| 4 | 05-03 | Smallest distance path | [0.97, 0.01, 0.02] | 826.80 | 18,312.86 | 281.39 |
| 5 | 05-03 | Greatest distance path | [0.00, 0.00, 1.00] | 937.47 | 23,321.79 | 276.14 |
| 6 | 05-03 | Most economic cost path | [0.61, 0.25, 0.14] | 826.89 | 18,250.05 | 280.35 |
| 7 | 05-03 | Highest economic cost path | [0.00, 0.00, 1.00] | 937.47 | 23,321.79 | 276.14 |
| 8 | 05-03 | Lowest emission path | [0.26, 0.00, 0.74] | 880.07 | 20,318.98 | 270.30 |
| 9 | 05-03 | Highest emission path | [0.00, 0.85, 0.15] | 851.67 | 19,449.60 | 321.78 |
| Number | Start Time | Method | Weight/[w1, w2, w3] | Distance Cost (km) | Economic Cost ($) | Emission Cost (Ton) |
|---|---|---|---|---|---|---|
| 1 | 05-06 | Actual path | / | 857.25 | 23,164.59 | 372.40 |
| 2 | 05-06 | A* path | / | 826.40 | 17,562.23 | 252.31 |
| 3 | 05-06 | RTAA* path | / | 857.88 | 20,287.3 | 335.65 |
| 4 | 05-06 | Smallest distance path | [0.97, 0.01, 0.02] | 826.80 | 18,461.91 | 283.86 |
| 5 | 05-06 | Greatest distance path | [0.00, 0.03, 0.97] | 951.99 | 23,100.94 | 272.49 |
| 6 | 05-06 | Most economic cost path | [0.61, 0.25, 0.14] | 826.89 | 18,399.10 | 282.82 |
| 7 | 05-06 | Highest economic cost path | [0.00, 0.00, 1.00] | 951.92 | 23,258.56 | 276.04 |
| 8 | 05-06 | Lowest emission path | [0.00, 0.03, 0.97] | 951.99 | 23,100.94 | 272.49 |
| 9 | 05-06 | Highest emission path | [0.13, 0.74, 0.13] | 851.67 | 19,598.65 | 324.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhang, J.; Wan, C.; Guedes Soares, C. A Data-Driven Method for Ship Route Planning Under Dynamic Environments. J. Mar. Sci. Eng. 2025, 13, 1901. https://doi.org/10.3390/jmse13101901
Song Z, Zhang J, Wan C, Guedes Soares C. A Data-Driven Method for Ship Route Planning Under Dynamic Environments. Journal of Marine Science and Engineering. 2025; 13(10):1901. https://doi.org/10.3390/jmse13101901
Chicago/Turabian StyleSong, Zhaofeng, Jinfen Zhang, Chengpeng Wan, and C. Guedes Soares. 2025. "A Data-Driven Method for Ship Route Planning Under Dynamic Environments" Journal of Marine Science and Engineering 13, no. 10: 1901. https://doi.org/10.3390/jmse13101901
APA StyleSong, Z., Zhang, J., Wan, C., & Guedes Soares, C. (2025). A Data-Driven Method for Ship Route Planning Under Dynamic Environments. Journal of Marine Science and Engineering, 13(10), 1901. https://doi.org/10.3390/jmse13101901

