A Short Review of Strategies for Augmenting Organism Recruitment on Coastal Defense Structures
Abstract
:1. Introduction
2. Breakwaters
2.1. Background
2.2. Low Recruitment Rates to Breakwaters
2.3. Prevalent Solutions
- a)
- Altering the boulder surface by hole drilling, chiseling, and creating slots to break the smooth surface and provide the necessary roughness [47].
- b)
- Combining add-ons onto artificial structures such as engineered blocks or terracotta plates attached to the breakwater.
- c)
- Using soft engineering construction elements and units [48].
- d)
- Using ecologically friendly cement mixtures in unit construction [42].
- e)
- Creating new breakwaters or sections of breakwaters from environmentally friendly units.
3. Ecological Enhancement Methods
3.1. Surface Rugosity
3.2. Unit Surface Complexity
3.3. Soft Engineering
3.4. Ecological Concrete Composition
3.5. Environmentally Friendly Units
3.6. Shelter-Oriented Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasquali, D.; Marucci, A. The effects of urban and economic development on coastal zone management. Sustainability 2021, 13, 6071. [Google Scholar] [CrossRef]
- Rao, N.S.; Ghermandi, A.; Portela, R.; Wang, X. Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values. Ecosyst. Serv. 2015, 11, 95–105. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources 2013, 2, 213–230. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; van Beukering, P. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Sherrard, T.R.; Hawkins, S.J.; Barfield, P.; Kitou, M.; Bray, S.; Osborne, P.E. Hidden biodiversity in cryptic habitats provided by porous coastal defence structures. Coast. Eng. 2016, 118, 12–20. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Li, S.; Lv, B.; Yang, Y.; Yang, Y.; Wang, C. Effects of offshore artificial islands on beach stability of sandy shores: Case study of Hongtang Bay, Hainan Province. Front. Earth Sci. 2022, 16, 876–889. [Google Scholar] [CrossRef]
- Spanier, E.; Zviely, D. Key environmental impacts along the Mediterranean coast of Israel in the last 100 years. J. Mar. Sci. Eng. 2023, 11, 2. [Google Scholar] [CrossRef]
- Airoldi, L.; Abbiati, M.; Beck, M.W.; Hawkins, S.J.; Jonsson, P.R.; Martin, D.; Moschella, P.S.; Sundelöf, A.; Thompson, R.C.; Åberg, P. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 2005, 52, 1073–1087. [Google Scholar] [CrossRef]
- Connell, S.D.; Glasby, T.M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 1999, 47, 373–387. [Google Scholar] [CrossRef]
- Masucci, G.D.; Acierno, A.; Reimer, J.D. Eroding diversity away: Impacts of a tetrapod breakwater on a subtropical coral reef. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 290–302. [Google Scholar] [CrossRef]
- Fadli, N.; Muchlisin, Z.A.; Sofyan, H.; El-Rahimi, S.A.; Dewiyanti, I.; Pratama, F.O.; Siti-Azizah, M.N. The composition of reef-associated fishes in Ulee Lheue breakwater Banda Aceh, Aceh, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; IOP Publishing: Bristol, UK, 2018; Volume 216, p. 012021. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Ng, C.S.L.; Chou, L.M. Natural colonisation of a marina seawall by scleractinian corals along Singapore’s east coast. Nat. Singapore 2012, 5, 177–183. [Google Scholar]
- Wen, C.K.C.; Chen, K.S.; Hsieh, H.J.; Hsu, C.M.; Chen, C.A. High coral cover and subsequent high fish richness on mature breakwaters in Taiwan. Mar. Pollut. Bull. 2013, 72, 55–63. [Google Scholar] [CrossRef]
- Burt, J.A. The environmental costs of coastal urbanization in the Arabian Gulf. City 2014, 18, 760–770. [Google Scholar] [CrossRef]
- Viyakarn, V.; Chavanich, S.; Raksasab, C.; Loyjiw, T. New coral community on a breakwater in Thailand. Coral Reefs 2009, 28, 427. [Google Scholar] [CrossRef]
- Martins, G.M.; Amaral, A.F.; Wallenstein, F.M.; Neto, A.I. Influence of a breakwater on nearby rocky intertidal community structure. Mar. Environ. Res. 2009, 67, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Strain, E.M.; Olabarria, C.; Mayer-Pinto, M.; Cumbo, V.; Morris, R.L.; Bugnot, A.B.; Bishop, M.J. Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? J. Appl. Ecol. 2018, 55, 426–441. [Google Scholar] [CrossRef]
- Rosenzweig, M. Win-Win Ecology, How the Earth’s Species Can Survive in the Midst of Human Enterprise; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Moosavi, S. Ecological coastal protection: Pathways to living shorelines. Procedia Eng. 2017, 196, 930–938. [Google Scholar] [CrossRef]
- Bakker, P.; van den Berge, A.; Hakenberg, R.; Klabbers, M.; Muttray, M.; Reedijk, B.; Rovers, I. Development of concrete breakwater Armour Units. In Proceedings of the 1st Coastal Estuary and Offshore Engineering Specialty Conference of the Canadian Society for Civil Engineering, Moncton, NB, Canada, 4–7 June 2003. [Google Scholar]
- Muttray, M.; Reedijk, B. Design of concrete armour layers. Hansa Int. Marit. J. 2009, 6, 111–118. [Google Scholar]
- Hall, A.E.; Herbert, R.J.; Britton, J.R.; Hull, S.L. Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures. Estuar. Coast. Shelf Sci. 2018, 210, 68–78. [Google Scholar] [CrossRef]
- Sedano, F.; Navarro-Barranco, C.; Guerra-García, J.M.; Espinosa, F. Understanding the effects of coastal defence structures on marine biota: The role of substrate composition and roughness in structuring sessile, macro- and meiofaunal communities. Mar. Pollut. Bull. 2020, 157, 111334. [Google Scholar] [CrossRef] [PubMed]
- Balqadi, A.A.; Salama, A.J.; Satheesh, S. Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia 2018, 60, 219–231. [Google Scholar] [CrossRef]
- Lee, J.W.; Nam, J.H.; Kim, Y.H.; Lee, K.H.; Lee, D.H. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol. 2008, 46, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.L.; Connell, J.H. Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. J. Exp. Mar. Biol. Ecol. 1987, 109, 249–273. [Google Scholar] [CrossRef]
- Toledo, M.I.; Torres, P.; Díaz, C.; Zamora, V.; López, J.; Olivares, G. Ecological succession of benthic organisms on niche-type artificial reefs. Ecol. Process. 2020, 9, 38. [Google Scholar] [CrossRef]
- Chee, S.Y.; Yee, J.C.; Cheah, C.B.; Evans, A.J.; Firth, L.B.; Hawkins, S.J.; Strain, E.M.A. Habitat complexity affects the structure but not the diversity of sessile communities on tropical coastal infrastructure. Front. Ecol. Evol. 2021, 9, 673227. [Google Scholar] [CrossRef]
- González-Duarte, M.M.; Fernández-Montblanc, T.; Bethencourt, M.; Izquierdo, A. Effects of substrata and environmental conditions on ecological succession on historic shipwrecks. Estuar. Coast. Shelf Sci. 2018, 200, 301–310. [Google Scholar] [CrossRef]
- Vaselli, S.; Bulleri, F.; Benedetti-Cecchi, L. Hard coastal-defence structures as habitats for native and exotic rocky-bottom species. Mar. Environ. Res. 2008, 66, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, L.; Turon, X.; Perkol-Finkel, S.; Rius, M. Corridors for aliens but not for natives: Effects of marine urban sprawl at a regional scale. Divers. Distrib. 2015, 21, 755–768. [Google Scholar] [CrossRef]
- Oricchio, F.T.; Pastro, G.; Vieira, E.A.; Flores, A.A.; Gibran, F.Z.; Dias, G.M. Distinct community dynamics at two artificial habitats in a recreational marina. Mar. Environ. Res. 2016, 122, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Moschella, P.S.; Abbiati, M.; Åberg, P.; Airoldi, L.; Anderson, J.M.; Bacchiocchi, F.; Hawkins, S.J. Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coastal Eng. 2005, 52, 1053–1071. [Google Scholar] [CrossRef]
- Wen, C.C.; Pratchett, M.S.; Shao, K.T.; Kan, K.P.; Chan, B.K.K. Effects of habitat modification on coastal fish assemblages. J. Fish Biol. 2010, 77, 1674–1687. [Google Scholar] [CrossRef]
- Köhler, J.; Hansen, P.D.; Wahl, M. Colonization patterns at the substratum-water interface: How does surface microtopography influence recruitment patterns of sessile organisms? Biofouling 1999, 14, 237–248. [Google Scholar] [CrossRef]
- Smith, R.S.; Johnston, E.L.; Clark, G.F. The role of habitat complexity in community development is mediated by resource availability. PLoS ONE 2014, 9, e102920. [Google Scholar] [CrossRef]
- Santin, S.; Willis, T.J. Direct versus indirect effects of wave exposure as a structuring force on temperate cryptobenthic fish assemblages. Mar. Biol. 2007, 151, 1683–1694. [Google Scholar] [CrossRef]
- Perkol-Finkel, S.; Hadary, T.; Rella, A.; Shirazi, R.; Sella, I. Seascape architecture—Incorporating ecological considerations in design of coastal and marine infrastructure. Ecol. Eng. 2018, 120, 645–654. [Google Scholar] [CrossRef]
- Spieler, R.E.; Gilliam, D.S.; Sherman, R.L. Artificial substrate and coral reef restoration: What do we need to know to know what we need. Bull. Mar. Sci. 2001, 69, 1013–1030. [Google Scholar]
- Porter, A.G.; Ferrari, R.L.; Kelaher, B.P.; Smith, S.D.A.; Coleman, R.A.; Byrne, M.; Figueira, W. Marine infrastructure supports abundant, diverse fish assemblages at the expense of beta diversity. Mar. Biol. 2018, 165, 112. [Google Scholar] [CrossRef]
- Fowler, A.M.; Booth, D.J. Seasonal dynamics of fish assemblages on breakwaters and natural rocky reefs in a temperate estuary: Consistent assemblage differences driven by sub-adults. PLoS ONE 2013, 8, e75790. [Google Scholar] [CrossRef]
- Safari, M.D. A short review of submerged breakwaters. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 203, p. 01005. [Google Scholar]
- Evans, A.J.; Firth, L.B.; Hawkins, S.J.; Morris, E.S.; Goudge, H.; Moore, P.J. Drill-cored rock pools: An effective method of ecological enhancement on artificial structures. Mar. Freshw. Res. 2015, 67, 123–130. [Google Scholar] [CrossRef]
- Masria, A.; Iskander, M.; Negm, A. Coastal protection measures, case study (Mediterranean zone, Egypt). J. Coast. Conserv. 2015, 19, 281–294. [Google Scholar] [CrossRef]
- Firth, L.B.; Thompson, R.C.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.J.; Hawkins, S.J. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coastal Eng. 2014, 87, 122–135. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- McAfee, D.; Costanza, R.; Connell, S.D. Valuing marine restoration beyond the ‘too small and too expensive’. Trends Ecol. Evol. 2021, 36, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Sella, I.; Hadary, T.; Rella, A.J.; Riegl, B.; Swack, D.; Perkol-Finkel, S. Design, production, and validation of the biological and structural performance of an ecologically engineered concrete block mattress: A nature-inclusive design for shoreline and offshore construction. Integr. Environ. Assess. Manag. 2022, 18, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, D.G.; Hughes, R.N. The effects of crevice size and availability on populations of Littorina rudis and Littorina neritoides. J. Anim. Ecol. 1978, 47, 71–83. [Google Scholar] [CrossRef]
- Reichstein, B.; Schröder, A.; Persson, L.; Roos, A.M. Habitat complexity does not promote coexistence in a size-structured intraguild predation system. J. Anim. Ecol. 2013, 82, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Loke, L.H.; Todd, P.A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 2016, 97, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Loke, L.H.; Heery, E.C.; Lai, S.; Bouma, T.J.; Todd, P.A. Area-independent effects of water-retaining features on intertidal biodiversity on eco-engineered seawalls in the tropics. Front. Mar. Sci. 2019, 6, 16. [Google Scholar] [CrossRef]
- Bishop, M.J.; Vozzo, M.L.; Mayer-Pinto, M.; Dafforn, K.A. Complexity–biodiversity relationships on marine urban structures: Reintroducing habitat heterogeneity through eco-engineering. Philos. Trans. R. Soc. B 2022, 377, 20210393. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.L.; Heery, E.C.; Loke, L.H.; Lau, E.; Strain, E.; Airoldi, L.; Leung, K.M. Design options, implementation issues and evaluating success of ecologically engineered shorelines. Oceanogr. Mar. Biol. 2019, 57, 175–212. [Google Scholar]
- Chai, Y.J.; Firth, L.B.; Ban, C.C.; Strain, E.; Hwai, A.T.S.; Yin, C.S. It is in the details: Simple structural complexity modification could restore ecological function on seawall. In Proceedings of the 11th IMT-GT UNINET Conference 2018—Bioscience for a Sustainable Future, Penang, Malaysia, 11–12 December 2018; pp. 1–6. [Google Scholar]
- Foley, M.; Stender, Y.; Singh, A.; Jokiel, P.; Rodgers, K.U. Ecological engineering considerations for coral reefs in the design of multifunctional coastal structures. Coast. Eng. 2014, 2, 1–15. [Google Scholar] [CrossRef]
- Ashis, M. Application of geotextiles in coastal protection and coastal engineering works: An overview. Int. Res. J. Environ. Sci. 2015, 4, 96–103. [Google Scholar]
- Wetzel, M.A.; Wiegmann, M.; Koop, J.H. The ecological potential of geotextiles in hydraulic engineering. Geotext. Geomembr. 2011, 29, 440–446. [Google Scholar] [CrossRef]
- Yiğiter, H.; Yazıcı, H.; Aydın, S. Effects of cement type, water/cement ratio, and cement content on sea water resistance of concrete. Build. Environ. 2007, 42, 1770–1776. [Google Scholar] [CrossRef]
- Hosseinzadeh, N.; Ghiasian, M.; Andiroglu, E.; Lamere, J.; Rhode-Barbarigos, L.; Sobczak, J.; Suraneni, P. Concrete seawalls: A review of load considerations, ecological performance, durability, and recent innovations. Ecol. Eng. 2022, 178, 106573. [Google Scholar] [CrossRef]
- Hayek, M.; Salgues, M.; Souche, J.C.; De Weerdt, K.; Pioch, S. How to improve the bioreceptivity of concrete infrastructure used in marine ecosystems? Literature review for mechanisms, key factors, and colonization effects. J. Coast. Res. 2023, 39, 553–568. [Google Scholar] [CrossRef]
- McManus, R.S.; Archibald, N.; Comber, S.; Knights, A.M.; Thompson, R.C.; Firth, L.B. Partial replacement of cement for waste aggregates in concrete coastal and marine infrastructure: A foundation for ecological enhancement? Ecol. Eng. 2018, 120, 655–667. [Google Scholar] [CrossRef]
- Natanzi, A.S.; Thompson, B.J.; Brooks, P.R.; Crowe, T.P.; McNally, C. Influence of concrete properties on the initial biological colonization of marine artificial structures. Ecol. Eng. 2021, 159, 106104. [Google Scholar] [CrossRef]
- Dennis, H.D.; Evans, A.J.; Banner, A.J.; Moore, P.J. Reefcrete: Reducing the environmental footprint of concretes for eco-engineering marine structures. Ecol. Eng. 2018, 120, 668–678. [Google Scholar] [CrossRef]
- Lapinski, M.; Perrot, M.; Sauleau, P. Can port concrete infrastructures be optimized to promote algal and macrofaunal colonization in the marine intertidal zone? Case study of Port Haliguen (Brittany, France). In Proceedings of the IOP Conference Series: Materials Science and Engineering, Port Haliguen, Brittany, France, 3–5 May 2022; IOP Publishing: Bristol, UK, 2022; Volume 1245, p. 012001. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Le Goff, F.; Pochard, I.; Dauzères, A. Effect of magnesium on calcium silicate hydrate (CSH). Cement Concr. Res. 2017, 97, 61–72. [Google Scholar] [CrossRef]
- Li, S.; Yin, J.; Zhang, G.; Gao, T. Research on reducing alkalinity of an ecological porous concrete mixture with carbonization. Mater. Tehnol. 2019, 53, 575–581. [Google Scholar] [CrossRef]
- Cooke, S.J.; Bergman, J.N.; Nyboer, E.A.; Reid, A.J.; Gallagher, A.J.; Hammerschlag, N.; Van de Riet, K.; Vermaire, J.C. Overcoming the concrete conquest of aquatic ecosystems. Biol. Conserv. 2020, 247, 108589. [Google Scholar] [CrossRef]
- Sella, I.; Perkol-Finkel, S. Blue is the new green–Ecological enhancement of concrete-based coastal and marine infrastructure. Ecol. Eng. 2015, 84, 260–272. [Google Scholar] [CrossRef]
- Harris, L.E. Submerged reef structures for habitat enhancement and shoreline erosion abatement. Coastal Eng. Tech. Note 2001, 1, 1–12. [Google Scholar]
- Ben Batan, A. Influence of Shelter Level in Breakwaters on Coral Survival and Settlement. Master’s Thesis, Submitted to Ben Gurion University, Beer Sheva, Israel, 2024. [Google Scholar]
- Dyson, K.; Yocom, K. Ecological design for urban waterfronts. Urban Ecosyst. 2015, 18, 189–208. [Google Scholar] [CrossRef]
- Risinger, J.D. Biologically Dominated Engineered Coastal Breakwaters. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2012. [Google Scholar] [CrossRef]
- Singhvi, A.; Luijendijk, A.P.; van Oudenhoven, A.P. The grey–green spectrum: A review of coastal protection interventions. J. Environ. Manag. 2022, 311, 114824. [Google Scholar] [CrossRef]
- Chaplin, L. The 15th Biodiversity Conference. Socialist Lawyer 2023, 92, 30–33. [Google Scholar]
- Davis, J.D.; MacKnight, S.; IMO Staff. Transport and the Environment Series; World Bank Technical Paper; World Bank: Washington, DC, USA, 1990; ISSN 0253-7494. No. 126. [Google Scholar]
- Cooper, J.A.G.; O’Connor, M.C.; McIvor, S. Coastal defences versus coastal ecosystems: A regional appraisal. Mar. Policy 2020, 111, 102332. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef] [PubMed]
Alteration | Specific Compound Used | Effect | References |
---|---|---|---|
Reduce surface alkalinity | A CEMI/GGBS concrete mixture | It was found that 50% CEMI/50% GGBS tiles aggregate significantly more Diatoms, green algae, and cyanobacteria biomass than 100% CEMI tiles after one month. | [67] |
Reduce chemical leaching | PFA/GGBS concrete mixture | Increased biofilm coverage rate by double that of commercial concrete mixture. | [66] |
Lower carbon footprint | Hemp fibers and recycled shell material in the concrete mixture | After 12 months of deployment in the intertidal environment, the hemp and shell concrete tiles supported significantly higher live coverage of marine organisms than the GGBS concrete. | [68] |
Increase small-scale porosity | Usage of tuff boulders and cobbles instead of smoothed rocks in concrete aggregates | Increased coral recruitment. | N. Shashar—unpublished data |
Increase iron availability | Iron dust in cement mix | Increased biofilm and algal growth. | N. Shashar—unpublished data |
Minimize deterioration of concrete under seawater attack | Magnesium ion as a replacement of calcium in Portland concrete | The addition of MgCl2 to synthetic calcium silicate hydrate (C-S-H) lowers the pH value below 10. | [70] |
Lower pH | Accelerated carbonization | Accelerated carbonization and additions of mineral admixtures considerably reduced alkalinity (lowest pH value was 8.57) and showed no harmful effect on the compressive strength. | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Natan, A.; Shashar, N. A Short Review of Strategies for Augmenting Organism Recruitment on Coastal Defense Structures. J. Mar. Sci. Eng. 2025, 13, 95. https://doi.org/10.3390/jmse13010095
Ben-Natan A, Shashar N. A Short Review of Strategies for Augmenting Organism Recruitment on Coastal Defense Structures. Journal of Marine Science and Engineering. 2025; 13(1):95. https://doi.org/10.3390/jmse13010095
Chicago/Turabian StyleBen-Natan, Almog, and Nadav Shashar. 2025. "A Short Review of Strategies for Augmenting Organism Recruitment on Coastal Defense Structures" Journal of Marine Science and Engineering 13, no. 1: 95. https://doi.org/10.3390/jmse13010095
APA StyleBen-Natan, A., & Shashar, N. (2025). A Short Review of Strategies for Augmenting Organism Recruitment on Coastal Defense Structures. Journal of Marine Science and Engineering, 13(1), 95. https://doi.org/10.3390/jmse13010095