DNA Barcoding and Intronic-ORF Structure Analyses of Cultivated Pyropia yezoensis in China: The Genetic Impact under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Collection and Culture of P. yezoensis
2.2. The Amplification of DNA Barcoding
2.3. The Cloning and Analyses of Intronic-ORF Structure
2.4. The Haplotype Diversity and Network Analysis
3. Results
3.1. Genetic Diversity of cox1 Gene
3.2. Genetic Diversity of rbcL Gene
3.3. The Intron Haplotype of Mitochondria
4. Discussion
4.1. The Intraspecific Variation of Cultivated P. yezoensis with Gene Barcoding
4.2. The Intraspecific Variation of Cultivated P. yezoensis with Intronic-ORF Structure
4.3. The Genetic Impact of P. yezoensis under Climate Change in China
4.4. The Genetic Diversity of P. yezoensis in Northwest Pacific
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutherland, J.E.; Lindstrom, S.C.; Nelson, W.A.; Brodie, J.; Lynch, M.D.; Hwang, M.S.; Choi, H.G.; Miyata, M.; Kikuchi, N.; Oliveira, M.C.; et al. A new look at an ancient order: Generic revision of the Bangiales (Rhodophyta). J. Phycol. 2011, 47, 1131–1151. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-E.; Deng, Y.-Y.; Xu, G.-P.; Russell, S.; Lu, Q.-Q.; Brodie, J. Redefining Pyropia (Bangiales, Rhodophyta): Four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J. Phycol. 2020, 56, 862–879. [Google Scholar] [CrossRef]
- Zuccarello, G.C.; Wen, X.; Kim, G.H. Splitting blades: Why genera need to be more carefully defined; the case for Pyropia (Bangiales, Rhodophyta). Algae 2022, 37, 205–211. [Google Scholar] [CrossRef]
- San, M.H.; Kawamura, Y.; Kimura, K.; Witharana, E.P.; Shimogiri, T.; Aye, S.S.; Min, T.T.; Aung, C.; Khaing, M.M.; Nagano, Y. Characterization and organelle genome sequencing of Pyropia species from Myanmar. Sci. Rep. 2023, 13, 15677. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Rhee, M.S. Health functionality and quality control of laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Mar. Drugs 2019, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lu, Q.; Brodie, J. A review of the bladed Bangiales (Rhodophyta) in China: History, culture and taxonomy. Euro J. Phycol. 2017, 52, 251–263. [Google Scholar] [CrossRef]
- Zhou, W.; Li, B.; Xu, H.; Liang, Z.; Lu, X.; Yang, L.; Wang, W. Potential distribution of two economic laver species-Neoporphyra haitanensis and Neopyropia yezoensis under climate change based on MaxEnt prediction and phylogeographic profiling. Ecol. Indic. 2023, 150, 110219. [Google Scholar] [CrossRef]
- Kim, M.; Wi, J.; Lee, J.; Cho, W.-B.; Park, E.-J.; Hwang, M.-S.; Choi, S.-J.; Jeong, W.-J.; Kim, G.H.; Choi, D.-W. Development of genomic simple sequence repeat (SSR) markers of Pyropia yezoensis (Bangiales, Rhodophyta) and evaluation of genetic diversity of Korean cultivars. J. Appl. Phycol. 2021, 33, 3277–3285. [Google Scholar] [CrossRef]
- Hwang, I.K.; Kim, S.-O.; Hwang, M.S.; Park, E.-J.; Ha, D.-S.; Lee, S.-R. Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta). Algae 2018, 33, 49–54. [Google Scholar] [CrossRef]
- Niwa, K.; Iida, S.; Kato, A.; Kawai, H.; Kikuchi, N.; Kobiyama, A.; Aruga, Y. Genetic diversity and introgression in two cultivated Species (Porphyra yezoensis and Porphyra Tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J. Phycol. 2009, 45, 493–502. [Google Scholar] [CrossRef]
- Park, E.-J.; Fukuda, S.; Endo, H.; Kitade, Y.; Saga, N. Genetic polymorphism within Porphyra yezoensis (Bangiales, Rhodophyta) and related species from Japan and Korea detected by cleaved amplified polymorphic sequence analysis. Eur. J. Phycol. 2007, 42, 29–40. [Google Scholar] [CrossRef]
- Koh, Y.H.; Kim, M.S. DNA barcoding reveals cryptic diversity of economic red algae, Pyropia (Bangiales, Rhodophyta): Description of novel species from Korea. J. Appl. Phycol. 2018, 30, 3425–3434. [Google Scholar] [CrossRef]
- Koh, Y.H.; Kim, M.S. Genetic diversity and distribution pattern of economic seaweeds Pyropia yezoensis and Py. suborbiculata (Bangiales, Rhodophyta) in the northwest Pacific. J. Appl. Phycol. 2020, 32, 2495–2504. [Google Scholar] [CrossRef]
- Milstein, D.; Medeiros, A.S.; Oliveira, E.C.; Oliveira, M.C. Native or introduced? A re-evaluation of Pyropia species (Bangiales, Rhodophyta) from Brazil based on molecular analyses. Euro J. Phycol. 2015, 50, 37–45. [Google Scholar] [CrossRef]
- Yow, Y.-Y.; Lim, P.-E.; Phang, S.-M. Assessing the use of mitochondrial cox1 gene and cox2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia. J. Appl. Phycol. 2012, 25, 831–838. [Google Scholar] [CrossRef]
- Yang, E.C.; Kim, K.M.; Kim, S.Y.; Lee, J.; Boo, G.H.; Lee, J.H.; Nelson, W.A.; Yi, G.; Schmidt, W.E.; Fredericq, S.; et al. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol. Evol. 2015, 7, 2394–2406. [Google Scholar] [CrossRef]
- Hwang, M.S.; Kim, S.-O.; Ha, D.-S.; Lee, J.E.; Lee, S.-R. Complete mitochondrial genome sequence of Pyropia yezoensis (Bangiales, Rhodophyta) from Korea. Plant Biotechnol. Rep. 2014, 8, 221–227. [Google Scholar] [CrossRef]
- Hughey, J.R.; Gabrielson, P.W.; Rohmer, L.; Tortolani, J.; Silva, M.; Miller, K.A.; Young, J.D.; Martell, C.; Ruediger, E. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes. Sci. Rep. 2014, 4, 5113. [Google Scholar] [CrossRef]
- Broom, J.E.S.; Nelson, W.A.; Farr, T.J.; Phillips, L.E.; Clayton, M. Relationships of the Porphyra (Bangiales, Rhodophyta) flora of the Falkland Island a molecular survey using rbcL and nSSU sequence data. Aust. Syst. Bot. 2010, 23, 27–37. [Google Scholar] [CrossRef]
- Saunders, G.W. Applying DNA barcoding to red macroalgae: A preliminary appraisal holds promise for future applications. Philos. Trans. R. Soc. Lond. B 2005, 360, 1879–1888. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Q.; Shen, S.; Shen, Z.; Tian, C.; Zhu, J. Cytological observations and rbcL, nrSSU gene sequence analyses of filamentous Bangiales (Rhodophyta) from China. J. Appl. Phycol. 2014, 27, 1355–1363. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Robba, L.; Russell, S.J.; Barker, G.L.; Brodie, J. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am. J. Bot. 2006, 93, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, M.L.; Contreras-Porcia, L.; Ramirez, M.E.; Macaya, E.C.; Contador, C.B.; Woods, H.; Wyatt, C.; Brodie, J. The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular species delimitation reveals extensive diversity. Mol. Phylogenetics Evol. 2016, 94, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, S.C.; Fredericq, S. rbcL gene sequences reveal relationships among north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P. aestivalis. Phycol. Res. 2003, 51, 211–224. [Google Scholar] [CrossRef]
- Kucera, H.; Saunders, G.W. A survey of Bangiales (Rhodophyta) based on multiple molecular markers reveals cryptic diversity. J. Phycol. 2012, 48, 869–882. [Google Scholar] [CrossRef]
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The molecular genetics of crop domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef]
- Voisin, M.; Engel, C.R.; Viard, F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic effects. Proc. Natl. Acad. Sci. USA 2005, 102, 5432–5437. [Google Scholar] [CrossRef]
- Yang, E.C.; Kim, M.S.; Geraldino, P.J.L.; Sahoo, D.; Shin, J.-A.; Boo, S.M. Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J. Appl. Phycol. 2008, 20, 161–168. [Google Scholar] [CrossRef]
- Yang, M.Y.; Kim, M.S. Phylogeography of the economic seaweeds Chondrus (Gigartinales, Rhodophyta) in the northwest Pacific based on rbcL and COI-5P genes. Algae 2022, 37, 135–147. [Google Scholar] [CrossRef]
- Yang, M.Y.; Geraldino, P.J.L.; Kim, M.S. DNA barcode assessment of Gracilaria salicornia (Gracilariaceae, Rhodophyta) from Southeast Asia. Bot. Stud. 2013, 54, 27. [Google Scholar] [CrossRef]
- Geraldino, P.J.L.; Yang, E.C.; Kim, M.S.; Boo, S.M. Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial cox1. Taxonomy 2009, 58, 606–616. [Google Scholar] [CrossRef]
- Tan, J.; Lim, P.-E.; Phang, S.-M.; Hong, D.D.; Sunarpi, H.; Hurtado, A.Q. Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta). PLoS ONE 2012, 7, e52905. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, J.; Hausner, G. Organellar introns in fungi, algae, and plants. Cells 2021, 10, 2001. [Google Scholar] [CrossRef]
- van Beveren, F.; Eme, L.; López-García, P.; Ciobanu, M.; Moreira, D.; Sloan, D. Independent size expansions and intron proliferation in red algal plastid and mitochondrial genomes. Genome Biol. Evol. 2022, 14, evac037. [Google Scholar] [CrossRef]
- Hwang, M.S.; Kim, S.-O.; Ha, D.-S.; Lee, J.E.; Lee, S.-R. Complete sequence and genetic features of the mitochondrial genome of Pyropia tenera (Rhodophyta). Plant Biotechnol. Rep. 2013, 7, 435–443. [Google Scholar] [CrossRef]
- Burger, G.; Saint-Louis, D.; Gray, M.W.; Lang, B.F. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 1999, 11, 1675–1694. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Cho, C.H.; Kim, E.J.; Bhattacharya, D.; Yoon, H.S. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. BMC Biol. 2022, 20, 2. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, Z.Y.; Song, W.H.; Qin, S. The contribution of intraspecific variation to future climate responses of brown algae. Limnol. Oceanogr. 2023, 69, 53–66. [Google Scholar] [CrossRef]
- Hwang, E.K.; Park, C.S. Seaweed cultivation and utilization of Korea. Algae 2020, 35, 107–121. [Google Scholar] [CrossRef]
- Kim, H.S.; Choi, H.G.; Hwang, M.S.; Jeon, Y.J.; Yarish, C.; Kim, J.K. Concise review of the genus Neopyropia (Rhodophyta: Bangiales). J. Appl. Phycol. 2022, 34, 1805–1824. [Google Scholar] [CrossRef]
- Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar] [CrossRef] [PubMed]
- Yannic, G.; Pellissier, L.; Ortego, J.; Lecomte, N.; Couturier, S.; Cuyler, C.; Dussault, C.; Hundertmark, K.J.; Irvine, R.J.; Jenkins, D.A.; et al. Genetic diversity in caribou linked to past and future climate change. Nat. Clim. Chang. 2014, 4, 132–137. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, L.; Sun, Z.; Yang, J.; Liu, G.; Niu, J.; Wang, G. Control of reactive oxygen species through antioxidant enzymes plays a pivotal role during the cultivation of Neopyropia yezoensis. J. Mar. Sci. Eng. 2022, 10, 109. [Google Scholar] [CrossRef]
- Niwa, K.; Kato, A.; Kobiyama, A.; Kawai, H.; Aruga, Y. Comparative study of wild and cultivated Porphyra yezoensis (Bangiales, Rhodophyta) based on molecular and morphological data. J. Appl. Phycol. 2008, 20, 261–270. [Google Scholar] [CrossRef]
- Nagano, Y.; Kimura, K.; Kobayashi, G.; Kawamura, Y. Genomic diversity of 39 samples of Pyropia species grown in Japan. PLoS ONE 2021, 16, e0252207. [Google Scholar] [CrossRef]
- Hwang, E.K.; Yotsukura, N.; Pang, S.J.; Su, L.; Shan, T.F. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 2019, 58, 484–495. [Google Scholar] [CrossRef]
Location | Haplotype | Nh | Np | Haplotype Diversity | Nucleotide Diversity | References | |
---|---|---|---|---|---|---|---|
cox1 | |||||||
China | North (14) | C1/2/3 | 3 | 3 | 0.473 | 0.00144 | This study |
JS (31) | C1/2/3 | 3 | 3 | 0.512 | 0.00156 | ||
All (45) | C1/2/3 | 3 | 3 | 0.569 | 0.00173 | ||
Korea | 27 | C01/02/03/04 | 4 | 6 | 0.439 | 0.00165 | Hwang et al., 2018 [9] |
Japan | 13 | C2 | - | - | - | - | |
rbcL | |||||||
China | North (14) | R1/2/3 | 3 | 2 | 0.473 | 0.00042 | This study |
JS (31) | R1/2/3 | 3 | 2 | 0.512 | 0.00040 | ||
All (45) | R1/2/3 | 3 | 2 | 0.569 | 0.00045 | ||
Korea | 8 | R1/2/3 | 3 | 2 | 0.607 | 0.00049 | GenBank |
Japan | 7 | R2/3 | 2 | 1 | 0.476 | 0.00034 |
Gene | Haplotypes | Variation Sites | ||||||
---|---|---|---|---|---|---|---|---|
cox1 | KF561997 | TTT258 | CCT309 | AGT435 | GCT462 | ACG522 | TTC603 | GGC702 |
China | C1 | AGC | GGT | |||||
C2 | AGC | TTT | ||||||
C3 | ||||||||
Korea | C01 | AGC | ||||||
C02 | TTC | CCC | AGC | ACT | ||||
C03 | ||||||||
C04 | AGC | GCC | TTT | |||||
Amino acid * | Phe | Val | Ser | Ala | Thr | Phe | Gly | |
rbcL | GGT900 | TTC1335 | ||||||
R1 | GGC | |||||||
R2 | ||||||||
R3 | TTT | |||||||
Amino acid | Gly | Phe |
Location | Haplotype | Nh | Site-Specific Nh | Haplotype Diversity | References | |
---|---|---|---|---|---|---|
China | LN (3) | H6, 13, 15 | 3 | 0 | 0.667 | This study |
SD (12) | H3, 9, 10, 11, 13, 14, 17 | 7 | 3 | 0.833 | ||
JS (31) | H1-8 11-13 15-17 | 14 | 8 | 0.884 | ||
All (46) | H1-17 | 17 | - | 0.905 | ||
Korea | 27 | H1-12 | 12 | - | 0.842 | Hwang et al., 2018 [9] |
Japan | 13 | H12 | 1 | - | - |
Code | Collection Location | Data | Barcode Haplotype | Intron Haplotype | |
---|---|---|---|---|---|
L11 | Dalian, LN | 31 December 2021 | R3C2 | R101C1111 | H13 |
L12 | R2C3 | R111C1000 | H15 | ||
L13 | R1C1 | R011C1100 | H6 | ||
S11 | Wendeng, SD | 22 January 2022 | R1C1 R3C2 | R011C0100 R111C0111 | H3 H14 |
S12 | R3C2 | R101C0011 | H10 | ||
S13 | R3C2 | R101C0011 | H10 | ||
S14 | R3C2 | R101C0111 | H11 | ||
S21 | Rongcheng, SD | 9 December 2020 | R3C2 | R101C1111 | H13 |
S22 | R3C2 | R111C1111 R101C1111 | H17 H13 | ||
S3 | Rushan, SD | 8 December 2020 | R3C2 | R111C1111 | H17 |
S4 | Jimo, Qingdao, SD | 10 December 2020 | R3C2 | R111C1111 | H17 |
S51 | Laoshan, Qingdao, SD | 13 January 2021 | R3C2 | R111C0111 | H14 |
S52 | R1C1 | R101C0000 | H9 | ||
J11 | Ganyu, Lianyungang, JS | 7 December 2020 | R3C2 | R111C1111 | H17 |
J12 | 16 November 2020 | R3C2 | R101C0111 | H11 | |
J13 | 16 November 2020 | R3C2 | R011C1011 | H5 | |
J14 | 16 November 2020 | R2C3 | R111C1000 | H15 | |
J21 | Liandao, Lianyungang, JS | 16 November 2020 | R3C2 | R101C1011 | H12 |
J22 | 23 December 2021 | R3C2 | R101C1111 | H13 | |
J31 | Gaogong Island, Lianyungang, JS | 26 January 2021 | R3C2 | R111C1100 | H16 |
J32 | 23 December 2021 | R3C2 | R111C1111 | H17 | |
J33 | 23 December 2021 | R3C2 | R111C1111 | H17 | |
J4 | Haibing Avenue, Lianyungang, JS | 18 March 2021 | R1C1 | R011C0100 | H3 |
J5 | Dafeng-1, Yancheng, JS | 27 February 2019 | R3C2 | R101C1111 | H13 |
J6 | Dafeng-2, Yancheng, JS | 8 March 2022 | R1C1 | R011C0100 | H3 |
J71 | Rudong-1, Nantong, JS | 8 January 2022 | R1C1 | R011C0100 | H3 |
J72 | R1C1 | R001C0100 | H1 | ||
J73 | R1C1 | R011C1111 | H8 | ||
J81 | Rudong-2, Nantong, JS | 20 February 2022 | R1C1 | R011C1110 | H7 |
J82 | 20 January 2022 | R1C1 | R011C1111 | H8 | |
J91 | Rudong-3, Nantong, JS | 20 January 2022 | R1C1 | R011C1100 | H6 |
J92 | 21 February 2022 | R1C1 | R011C1110 | H7 | |
J10-1 | Haimen, Nantong, JS | 10 March 2020 | R2C3 | R111C1000 | H15 |
J10-2 | 16 January 2020 | R1C1 | R011C1100 | H6 | |
J10-3 | 16 January 2020 | R1C1 | R011C1100 | H6 | |
J10-4 | 16 January 2020 | R1C1 | R011C1100 | H6 | |
J10-5 | 19 March 2020 | R1C1 | R011C1100 | H6 | |
J10-6 | 27 February 2018 | R1C1 | R011C1100 | H6 | |
J11-1 | Qidong, Nantong, JS | 15 March 2021 | R1C1 | R011C1100 | H6 |
J11-2 | R1C1 | R011C1000 | H4 | ||
J11-3 | R1C1 | R011C1000 | H4 | ||
J11-4 | R1C1 | R011C0000 | H2 | ||
J11-5 | R1C1 | R011C1100 | H6 | ||
J11-6 | R1C1 | R011C0000 | H2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Tian, C.; Wei, L.; Hu, C.; Xu, G.; Zhou, W.; Deng, Y. DNA Barcoding and Intronic-ORF Structure Analyses of Cultivated Pyropia yezoensis in China: The Genetic Impact under Climate Change. J. Mar. Sci. Eng. 2024, 12, 1551. https://doi.org/10.3390/jmse12091551
Huang G, Tian C, Wei L, Hu C, Xu G, Zhou W, Deng Y. DNA Barcoding and Intronic-ORF Structure Analyses of Cultivated Pyropia yezoensis in China: The Genetic Impact under Climate Change. Journal of Marine Science and Engineering. 2024; 12(9):1551. https://doi.org/10.3390/jmse12091551
Chicago/Turabian StyleHuang, Guihua, Cuicui Tian, Liangdi Wei, Chuanming Hu, Guangping Xu, Wei Zhou, and Yinyin Deng. 2024. "DNA Barcoding and Intronic-ORF Structure Analyses of Cultivated Pyropia yezoensis in China: The Genetic Impact under Climate Change" Journal of Marine Science and Engineering 12, no. 9: 1551. https://doi.org/10.3390/jmse12091551