Application of Artificial Intelligence in Maritime Transportation
Funding
Conflicts of Interest
List of Contributions
- Sedaghat, A.; Arbabkhah, H.; Jafari Kang, M.; Hamidi, M. Deep Learning Applications in Vessel Dead Reckoning to Deal with Missing Automatic Identification System Data. J. Mar. Sci. Eng. 2024, 12, 152. https://doi.org/10.3390/jmse12010152.
- Zhao, L.; Zuo, Y.; Li, T.; Chen, C.L.P. Application of an Encoder–Decoder Model with Attention Mechanism for Trajectory Prediction Based on AIS Data: Case Studies from the Yangtze River of China and the Eastern Coast of the U.S. J. Mar. Sci. Eng. 2023, 11, 1530. https://doi.org/10.3390/jmse11081530.
- Lee, J.-S.; Kim, T.-H.; Park, Y.-G. Maritime Transport Network in Korea: Spatial-Temporal Density and Path Planning. J. Mar. Sci. Eng. 2023, 11, 2364. https://doi.org/10.3390/jmse11122364.
- Zheng, H.; Hu, Q.; Yang, C.; Mei, Q.; Wang, P.; Li, K. Identification of Spoofing Ships from Automatic Identification System Data via Trajectory Segmentation and Isolation Forest. J. Mar. Sci. Eng. 2023, 11, 1516. https://doi.org/10.3390/jmse11081516.
- Zhen, R.; Gu, Q.; Shi, Z.; Suo, Y. An Improved A-Star Ship Path-Planning Algorithm Considering Current, Water Depth, and Traffic Separation Rules. J. Mar. Sci. Eng. 2023, 11, 1439. https://doi.org/10.3390/jmse11071439.
- Hu, S.; Tian, S.; Zhao, J.; Shen, R. Path Planning of an Unmanned Surface Vessel Based on the Improved A-Star and Dynamic Window Method. J. Mar. Sci. Eng. 2023, 11, 1060. https://doi.org/10.3390/jmse11051060.
- Ma, Y.; Li, B.; Huang, W.; Fan, Q. An Improved NSGA-II Based on Multi-Task Optimization for Multi-UAV Maritime Search and Rescue under Severe Weather. J. Mar. Sci. Eng. 2023, 11, 781. https://doi.org/10.3390/jmse11040781.
- Li, Y.; Li, Z.; Mei, Q.; Wang, P.; Hu, W.; Wang, Z.; Xie, W.; Yang, Y.; Chen, Y. Research on Multi-Port Ship Traffic Prediction Method Based on Spatiotemporal Graph Neural Networks. J. Mar. Sci. Eng. 2023, 11, 1379. https://doi.org/10.3390/jmse11071379.
- Chen, L.; Huang, C.; Wang, Y. A Study on the Correlation between Ship Movement Characteristics and Ice Conditions in Polar Waters. J. Mar. Sci. Eng. 2023, 11, 729. https://doi.org/10.3390/jmse11040729.
- Arbabkhah, H.; Sedaghat, A.; Jafari Kang, M.; Hamidi, M. Automatic Identification System-Based Prediction of Tanker and Cargo Estimated Time of Arrival in Narrow Waterways. J. Mar. Sci. Eng. 2024, 12, 215. https://doi.org/10.3390/jmse12020215.
- Chen, X.; Wei, C.; Xin, Z.; Zhao, J.; Xian, J. Ship Detection under Low-Visibility Weather Interference via an Ensemble Generative Adversarial Network. J. Mar. Sci. Eng. 2023, 11, 2065. https://doi.org/10.3390/jmse11112065.
- Zhou, W.; Li, B.; Luo, G. Multi-Feature Fusion-Guided Low-Visibility Image Enhancement for Maritime Surveillance. J. Mar. Sci. Eng. 2023, 11, 1625. https://doi.org/10.3390/jmse11081625.
- Zhou, Z.; Zhao, J.; Chen, X.; Chen, Y. A Ship Tracking and Speed Extraction Framework in Hazy Weather Based on Deep Learning. J. Mar. Sci. Eng. 2023, 11, 1353. https://doi.org/10.3390/jmse11071353.
- Zhao, J.; Song, F.; Gong, G.; Wang, S. Improved UNet-Based Shoreline Detection Method in Real Time for Unmanned Surface Vehicle. J. Mar. Sci. Eng. 2023, 11, 1049. https://doi.org/10.3390/jmse11051049.
- Ye, Y.; Zhen, R.; Shao, Z.; Pan, J.; Lin, Y. A Novel Intelligent Ship Detection Method Based on Attention Mechanism Feature Enhancement. J. Mar. Sci. Eng. 2023, 11, 625. https://doi.org/10.3390/jmse11030625.
- Cheng, C.; Liu, D.; Du, J.-H.; Li, Y.-Z. Research on Visual Perception for Coordinated Air–Sea through a Cooperative USV-UAV System. J. Mar. Sci. Eng. 2023, 11, 1978. https://doi.org/10.3390/jmse11101978.
- Chen, G.; Yin, J.; Yang, S. Ship Autonomous Berthing Simulation Based on Covariance Matrix Adaptation Evolution Strategy. J. Mar. Sci. Eng. 2023, 11, 1400. https://doi.org/10.3390/jmse11071400.
- Yan, K.; Wang, Y.; Wang, W.; Qiao, C.; Chen, B.; Jia, L. A System-Theory and Complex Network-Fused Approach to Analyze Vessel–Wind Turbine Allisions in Offshore Wind Farm Waters. J. Mar. Sci. Eng. 2023, 11, 1306. https://doi.org/10.3390/jmse11071306.
- Li, Z.; Wang, B.; Wang, X.; Zhang, C.; Meng, X. Modelling, Linearity Analysis and Optimization of an Inductive Angular Displacement Sensor Based on Magnetic Focusing in Ships. J. Mar. Sci. Eng. 2023, 11, 1028. https://doi.org/10.3390/jmse11051028.
- Bai, H.; Yu, B.; Gu, W. Research on Position Sensorless Control of RDT Motor Based on Improved SMO with Continuous Hyperbolic Tangent Function and Improved Feedforward PLL. J. Mar. Sci. Eng. 2023, 11, 642. https://doi.org/10.3390/jmse11030642.
- Yang, Y.; Sun, S.; Zhong, M.; Feng, J.; Wen, F.; Song, H. A Refined Collaborative Scheduling Method for Multi-Equipment at U-Shaped Automated Container Terminals Based on Rail Crane Process Optimization. J. Mar. Sci. Eng. 2023, 11, 605. https://doi.org/10.3390/jmse11030605.
References
- Hua, R.; Yin, J.; Wang, S.; Han, Y.; Wang, X. Speed optimization for maximizing the ship’s economic benefits considering the Carbon Intensity Indicator (CII). Ocean Eng. 2024, 293, 116712. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Ling, J.; Wu, H.; Wu, B.; Li, C. Ship imaging trajectory extraction via an aggregated you only look once (YOLO) model. Eng. Appl. Artif. Intell. 2024, 130, 107742. [Google Scholar] [CrossRef]
- Moreno, F.C.; Gonzalez, J.R.; Muro, J.S.; Maza, J.A.G. Relationship between human factors and a safe performance of vessel traffic service operators: A systematic qualitative-based review in maritime safety. Saf. Sci. 2022, 155, 105892. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Tadros, M.; Ventura, M.; Soares, C.G. Decision support system for ship energy efficiency management based on an optimization model. Energy 2024, 292, 130318. [Google Scholar] [CrossRef]
- Soner, O.; Kayisoglu, G.; Bolat, P.; Tam, K. Risk sensitivity analysis of AIS cyber security through maritime cyber regulatory frameworks. Appl. Ocean Res. 2024, 142, 103855. [Google Scholar] [CrossRef]
- Khan, R.U.; Yin, J.; Mustafa, F.S.; Shi, W. Factor assessment of hazardous cargo ship berthing accidents using an ordered logit regression model. Ocean Eng. 2023, 284, 115211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ma, D.; Liu, R.W. Application of Artificial Intelligence in Maritime Transportation. J. Mar. Sci. Eng. 2024, 12, 439. https://doi.org/10.3390/jmse12030439
Chen X, Ma D, Liu RW. Application of Artificial Intelligence in Maritime Transportation. Journal of Marine Science and Engineering. 2024; 12(3):439. https://doi.org/10.3390/jmse12030439
Chicago/Turabian StyleChen, Xinqiang, Dongfang Ma, and Ryan Wen Liu. 2024. "Application of Artificial Intelligence in Maritime Transportation" Journal of Marine Science and Engineering 12, no. 3: 439. https://doi.org/10.3390/jmse12030439