Improved YOLOv5 Algorithm for Real-Time Prediction of Fish Yield in All Cage Schools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Improved YOLOv5 Algorithm Detection Principle
2.2. Improved CoordConv-YoLov5 for Technical Solution Innovation
2.3. Length Estimation Algorithm
2.4. Real-Time Prediction Algorithm of Fish Yield
2.5. Dataset Collection and Processing
2.6. Experimental Environment and Parameter Settings
2.7. Evaluating Indicator
3. Results
3.1. Verification
3.2. Experimental Comparison of Different Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simmonds, J.; Maclennan, D.N. Fisheries Acoustics: Theory and Practice, 2nd ed.; Blackwell Science: Oxford, UK, 2005. [Google Scholar]
- Elliott, J.M.; Fletcher, J.M. A Comparison of Three Methods for Assessing the Abundance of Arctic Charr, Salvelinus alpinus, in Windermere (Northwest England). Fish. Res. 2001, 53, 39–46. [Google Scholar] [CrossRef]
- Martignac, F.; Daroux, A.; Bagliniere, J.-L.; Ombredane, D.; Guillard, J. The Use of Acoustic Cameras in Shallow Waters: New Hydroacoustic Tools for Monitoring Migratory Fish Population. A Review of DIDSON Technology. Fish Fish. 2014, 16, 486–510. [Google Scholar] [CrossRef]
- Han, J.; Asada, A.; Mizoguchi, M. DIDSON-Based Acoustic Counting Method for Juvenile Ayu Plecoglossus altivelis Migrating Upstream. J. Mar. Acoust. Soc. Jpn. 2009, 36, 250–257. [Google Scholar] [CrossRef]
- Ismail, A.; Wardiah Mohd Dahalan; Öchsner, A. Advanced Materials and Engineering Technologies; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Villon, S.; Chaumont, M.; Subsol, G.; Villéger, S.; Claverie, T.; Mouillot, D. Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between Deep Learning and HOG+ SVM methods. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Lecce, Italy, 24–27 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 160–171. [Google Scholar]
- Bonora, A.; Bortolotti, G.; Bresilla, K.; Grappadelli, L.C.; Manfrini, L. A Convolutional Neural Network Approach to Detecting Fruit Physiological Disorders and Maturity in “Abbé Fétel” Pears. Biosyst. Eng. 2021, 212, 264–272. [Google Scholar] [CrossRef]
- Lu, S.; Chen, W.; Zhang, X.; Karkee, M. Canopy-Attention-YOLOv4-Based Immature/Mature Apple Fruit Detection on Dense-Foliage Tree Architectures for Early Crop Load Estimation. Comput. Electron. Agric. 2022, 193, 106696. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29, 379–387. [Google Scholar]
- Zeng, L.; Sun, B.; Zhu, D. Underwater Target Detection Based on Faster R-CNN and Adversarial Occlusion Network. Eng. Appl. Artif. Intell. 2021, 100, 104190. [Google Scholar] [CrossRef]
- Song, S.; Zhu, J.; Li, X.; Huang, Q. Integrate MSRCR and Mask R-CNN to Recognize Underwater Creatures on Small Sample Datasets. IEEE Access 2020, 8, 172848–172858. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Chen, L.; Zheng, M.; Duan, S.; Luo, W.; Yao, L. Underwater Target Recognition Based on Improved YOLOv4 Neural Network. Electronics 2021, 10, 1634. [Google Scholar] [CrossRef]
- Le, J.; Xu, L. An Automated Fish Counting Algorithm in Aquaculture Based on Image Processing. In Proceedings of the 2016 International Forum on Mechanical, Control and Automation, Shenzhen, China, 30–31 December 2017; pp. 358–366. [Google Scholar]
- Yun, C.; Gayathri, N.; Robert, B. Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. In Proceedings of the 2009 International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 5–8 February 2009; pp. 514–551. [Google Scholar]
- Foote, K.G. Fish Target Strengths for Use in Echo Integrator Surveys. J. Acoust. Soc. Am. 1987, 82, 981–987. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-Time Detection and Tracking of Fish Abnormal Behavior Based on Improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [Google Scholar] [CrossRef]
- Muksit, A.A.; Hasan, F.; Hasan Bhuiyan Emon, M.F.; Haque, M.R.; Anwary, A.R.; Shatabda, S. YOLO-Fish: A Robust Fish Detection Model to Detect Fish in Realistic Underwater Environment. Ecol. Inform. 2022, 72, 101847. [Google Scholar] [CrossRef]
- Wang, X.; Xue, G.; Huang, S.; Liu, Y. Underwater Object Detection Algorithm Based on Adding Channel and Spatial Fusion Attention Mechanism. J. Mar. Sci. Eng. 2023, 11, 1116. [Google Scholar] [CrossRef]
- Furusawa, M. Acoustic Remote Sensing Techniques for Fisheries Resource Surveys. J. Remote Sens. 1991, 11, 313–319. [Google Scholar] [CrossRef]
- Helser, T.E.; Punt, A.E.; Methot, R.D. A Generalized Linear Mixed Model Analysis of a Multi-Vessel Fishery Resource Survey. Fish. Res. 2004, 70, 251–264. [Google Scholar] [CrossRef]
- Cai, L.; Sun, Q.; Xu, T.; Ma, Y.; Chen, Z. Multi-AUV Collaborative Target Recognition Based on Transfer-Reinforcement Learning. IEEE Access 2020, 8, 39273–39284. [Google Scholar] [CrossRef]
Network Model | Network Depth | Network Width |
---|---|---|
YoLov5n | 0.33 | 0.25 |
YoLov5s | 0.33 | 0.5 |
YoLov5m | 0.67 | 0.75 |
YoLov5l | 1 | 1 |
YoLov5x | 1.33 | 1.25 |
Dead Fish in the Cage | Dead Fish in Ordinary Cage | Dead Fish on the Lake Surface | Grouper Dead Fish | Golden Pomfret Dead Fish | Perch Dead Fish | Total | |
---|---|---|---|---|---|---|---|
Training set | 7050 | 1270 | 8650 | 2350 | 3640 | 1260 | 24,220 |
Test set | 880 | 160 | 1070 | 300 | 450 | 160 | 3020 |
Validation set | 880 | 160 | 1070 | 300 | 450 | 160 | 3020 |
Total | 8810 | 1590 | 10,790 | 2950 | 4540 | 1580 | 30,260 |
Parameter Name | Parameter Value |
---|---|
Initial learning rate | 0.001 |
Batch training size | 32 |
Momentum | 0.937 |
Weight decay | 0.0005 |
Epoch | 200 |
Image size | 640 × 640 |
YoLov5 | Improving YoLov5 | Accuracy Rate | Recall | mAP0.95 |
---|---|---|---|---|
√ | −− | 95.7 | 90.9 | 79.3 |
−− | √ | 99.2 | 96.4 | 95.4 |
Algorithm Type | mAP | FPS (Frames per Second) |
---|---|---|
Faster R-CNN | 70.93 | 15 |
SSD | 66.47 | 36 |
YOLOv3 | 75.56 | 38 |
YOLOv4 | 76.21 | 29 |
YoLov5 | 79.3 | 126 |
CoordConv-YoLov5 | 95.4 | 121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Chen, L.-Z.; Peng, B.; Lin, Y.-T. Improved YOLOv5 Algorithm for Real-Time Prediction of Fish Yield in All Cage Schools. J. Mar. Sci. Eng. 2024, 12, 195. https://doi.org/10.3390/jmse12020195
Wang L, Chen L-Z, Peng B, Lin Y-T. Improved YOLOv5 Algorithm for Real-Time Prediction of Fish Yield in All Cage Schools. Journal of Marine Science and Engineering. 2024; 12(2):195. https://doi.org/10.3390/jmse12020195
Chicago/Turabian StyleWang, Lei, Ling-Zhi Chen, Bo Peng, and Ying-Tien Lin. 2024. "Improved YOLOv5 Algorithm for Real-Time Prediction of Fish Yield in All Cage Schools" Journal of Marine Science and Engineering 12, no. 2: 195. https://doi.org/10.3390/jmse12020195
APA StyleWang, L., Chen, L.-Z., Peng, B., & Lin, Y.-T. (2024). Improved YOLOv5 Algorithm for Real-Time Prediction of Fish Yield in All Cage Schools. Journal of Marine Science and Engineering, 12(2), 195. https://doi.org/10.3390/jmse12020195