A Parametric Study on Air Lubrication for Ship Energy Efficiency
Abstract
:1. Introduction
2. Methodology
2.1. Computational Domain
2.2. Turbulence Model
2.3. Boundary Conditions
2.4. Mesh
2.5. Numerical Solution
2.6. Mesh Independence
2.7. Validation
2.8. Air Injection
- Region I—the flat area at the bottom of the hull where the injection nozzles are located;
- Region II—the flat area at the bottom of the hull without injection nozzles;
- Region III—the entire wetted area with varying water levels.
2.9. Power Savings
3. Results
3.1. Gross Power Saving and Net Power Saving
3.2. Analysis of Variance (ANOVA)
3.3. Air Injection Flow Patterns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transport 2019; United Nations Conference on Trade and Development (UNCTAD): Geneva, Switzerland, 2020. [Google Scholar]
- IMO. Fourth IMO Greenhouse Gas Study 2020; International Maritime Organization (IMO): London, UK, 2021. [Google Scholar]
- IEA. World Energy Outlook 2023; International Energy Agency (IEA): Paris, France, 2023. [Google Scholar] [CrossRef]
- IMO. IMO Strategy on Reduction of GHG Emissions from Ships; MEPC: London, UK, 2023. [Google Scholar]
- BV. Alternative Fuels Outlook for Shipping: An Overview of Alternative Fuels from a Well-To-Wake Perspective; Bureau Veritas: Paris, France, 2022. [Google Scholar]
- DNV. Maritime Forecast to 2050; Det Norske Veritas (DNV): Oslo, Norway, 2023. [Google Scholar]
- Wu, Y.; Hua, J.; Wu, D. Economic analysis of ship operation using a new antifouling strategy. Ocean. Eng. 2022, 266, 113038. [Google Scholar] [CrossRef]
- Ma, M.; Qi, Y.; Zhang, C.; Chen, Q.; Gu, C.; Zhang, Z. Highly efficient antifouling and toughening hydrogel for ship coatings. Appl. Surf. Sci. 2024, 662, 160102. [Google Scholar] [CrossRef]
- Zha, L.; Zhu, R.; Hong, L.; Huang, S. Hull form optimization for reduced calm-water resistance and improved vertical motion performance in irregular head waves. Ocean. Eng. 2021, 233, 109208. [Google Scholar] [CrossRef]
- Tripathi, S.; Vijayakumar, R. Numerical and experimental study of stern flaps impact on resistance and propulsion of high–speed displacement ships. Ocean. Eng. 2024, 292, 116483. [Google Scholar] [CrossRef]
- Kumagai, I.; Takahashi, Y.; Murai, Y. Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: Theory, experiments, and application to ships. Ocean. Eng. 2015, 95, 183–194. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Liu, J. Numerical investigation of a novel device for bubble generation to reduce ship drag. Int. J. Nav. Archit. Ocean. Eng. 2018, 10, 629–643. [Google Scholar] [CrossRef]
- Murai, Y.; Sakamaki, H.; Kumagai, I.; Park, H.J.; Tasaka, Y. Mechanism and performance of a hydrofoil bubble generator utilized for bubbly drag reduction ships. Ocean. Eng. 2020, 216, 108085. [Google Scholar] [CrossRef]
- Kumagai, I.; Kawakita, C.; Hamada, T.; Murai, Y. Air entrainment by a hydrofoil in a high-speed water flow for design of bubbly drag reduction ships. Ocean. Eng. 2024, 302, 117505. [Google Scholar] [CrossRef]
- Ni, B.Y.; Wei, H.; Li, Z.; Fang, B.; Xue, Y. Numerical Simulation of an Air-Bubble System for Ice Resistance Reduction. J. Mar. Sci. Eng. 2022, 10, 1201. [Google Scholar] [CrossRef]
- Butterworth, J.; Atlar, M.; Shi, W. Experimental analysis of an air cavity concept applied on a ship hull to improve the hull resistance. Ocean. Eng. 2015, 110, 2–10. [Google Scholar] [CrossRef]
- Hao, W.; Yongpeng, O. Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect. Int. J. Nav. Archit. Ocean. Eng. 2019, 11, 510–520. [Google Scholar] [CrossRef]
- Bispo, R.L.P.; Marques, C.H.; Souza, J.A. Air leakage in the air injection resistance reduction method. In Proceedings of the 29th International Water Transport, Shipbuilding and Offshore Congress, Rio de Janeiro, Brazil, 25–27 October 2022; pp. 1–12. [Google Scholar] [CrossRef]
- Montazeri, M.H.; Alishahi, M.M. Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations. Ocean. Eng. 2020, 196, 106779. [Google Scholar] [CrossRef]
- Jang, J.; Choi, S.H.; Ahn, S.M.; Kim, B.; Seo, J.S. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship. Int. J. Nav. Archit. Ocean. Eng. 2014, 6, 363–379. [Google Scholar] [CrossRef]
- Hao, W.; Yongpeng, O.; Qing, Y. Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity. Ocean. Eng. 2019, 183, 236–248. [Google Scholar] [CrossRef]
- Merkle, C.L.; Deutsch, S. Microbubble drag reduction in liquid turbulent boundary layers. Appl. Mech. Rev. 1992, 45, 103–127. [Google Scholar] [CrossRef]
- Latorre, R. Ship hull drag reduction using bottom air injection. Ocean. Eng. 1997, 24, 161–175. [Google Scholar] [CrossRef]
- Elbing, B.R.; Winkel, E.S.; Lay, K.A.; Ceccio, S.L.; Dowling, D.R.; Perlin, M. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 2008, 612, 201–236. [Google Scholar] [CrossRef]
- Yanuar, Y.; Waskito, K.; Pratama, S.; Candra, B.; Rahmat, B. Comparison of Microbubble and Air Layer Injection with Porous Media for Drag Reduction on a Self-propelled Barge Ship Model. J. Mar. Sci. Appl. 2018, 17, 165–172. [Google Scholar] [CrossRef]
- Dogrul, A.; Arıkan Özden, Y.; Çelik, F. A numerical investigation of air lubrication effect on ship resistance. In Proceedings of the International Conference on Ship Drag Reduction, Istanbul, Turkey, 20–21 May 2010; pp. 1–8. [Google Scholar]
- Park, S.H.; Lee, I. Optimization of drag reduction effect of air lubrication for a tanker model. Int. J. Nav. Archit. Ocean. Eng. 2018, 10, 427–438. [Google Scholar] [CrossRef]
- Zhao, X.; Zong, Z. Experimental and numerical studies on the air-injection drag reduction of the ship model. Ocean. Eng. 2022, 251, 111032. [Google Scholar] [CrossRef]
- Mäkiharju, S.A.; Ceccio, S.L. On multi-point gas injection to form an air layer for frictional drag reduction. Ocean. Eng. 2018, 147, 206–214. [Google Scholar] [CrossRef]
- Greenshields, C. OpenFOAM v8 User Guide; The OpenFOAM Foundation: London, UK, 2020; Available online: https://doc.cfd.direct/openfoam/user-guide-v8 (accessed on 11 December 2024).
- el Moctar, O.; Shigunov, V.; Zorn, T. Duisburg Test Case: Post-Panamax Container Ship for Benchmarking. Ship Technol. Res. 2012, 59, 50–64. [Google Scholar] [CrossRef]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Versteeg, H.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education Limited: London, UK, 2007. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Fiuza, G.; Rezende, A. Comparação entre modelos de turbulência K-ω aplicados em um escoamento em canal com junção T. Rev. Mil. CiêNcia Tecnol. 2019, 34. [Google Scholar]
- Ansys. Near-Wall Mesh Guidelines; Ansys, Inc.: Canonsburg, PA, USA, 2009. [Google Scholar]
- Kawashima, H.; Fukuda, T.; Kodama, Y.; Hinatsu, M.; Hori, T.; Makino, M.; Harumi, K.; Ohnawa, M.; Takeshi, H.; Takimoto, T. Frictional Resistance Reduction Device for Ship. EP2272747A4. National Institute of Maritime Port and Aviation Technology. 2013. Available online: https://patents.google.com/patent/EP2272747A4/en (accessed on 11 December 2024).
- Tuan, P.; Huong, P. Reduction ship skin resistance by injection small bubbles. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Campbell, J.M.; Maddox, R.N.; Lilly, L.L.; Hubbard, R.A. Gas Conditioning and Processing; Campbell Petroleum Series: Norman, OK, USA, 1976; Volume 1. [Google Scholar]
- MAN Energy Solutions. Basic Principles of Ship Propulsion; MAN Energy Solutions: Copenhagen, Denmark, 2023. [Google Scholar]
- Bevans, R. ANOVA in R|A Complete Step-by-Step Guide with Examples; Scribbr: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software; PBC: Boston, MA, USA, 2023. [Google Scholar]
Face | Boundary Conditions | ||
---|---|---|---|
Flow | Volume Fraction | Turbulence (-) | |
Atmosphere | Prescribed pressure | Zero derivative * | Prescribed ( = 0.00015 and = 2) |
Nozzles | Prescribed flow rate | Prescribed ( = 0) | Zero derivative * |
Hull | No Slip | Zero derivative * | Zero derivative * |
Inlet | Prescribed velocity | Prescribed ( = 1) | Prescribed ( = 0.00015 and = 2) |
Bottom | Symmetrical | Symmetrical | Symmetrical |
Side | Symmetrical | Symmetrical | Symmetrical |
Symmetry plane | Symmetrical | Symmetrical | Symmetrical |
Outlet | Zero derivative * | Zero derivative * | Prescribed ( = 0.00015 and = 2) |
Properties | Value |
---|---|
Water density () | 1025 |
Air density () | 1.21 |
Water kinematic viscosity () | |
Air kinematic viscosity () |
Mesh | Cells | Resistance [N] | [%] | Time [h] | |||||
---|---|---|---|---|---|---|---|---|---|
Viscous | Pressure | Total | Viscous | Pressure | Total | ||||
M1 | 781,506 | 15.84 | 4.76 | 20.60 | 18.85 | 3.93 | 14.52 | 123.49 | 4.70 |
M2 | 1,236,514 | 19.52 | 4.58 | 24.10 | 1.61 | 3.62 | 0.66 | 63.48 | 7.42 |
M3 | 1,822,576 | 19.84 | 4.42 | 24.26 | 0.90 | 1.84 | 0.41 | 47.89 | 11.13 |
M4 | 2,506,067 | 20.02 | 4.34 | 24.36 | - | - | - | 29.33 | 14.70 |
Experimental [31] | Numeric (This Work) | Error % | ||||
---|---|---|---|---|---|---|
Velocity [] | 1.335 | 1.668 | 1.335 | 1.668 | 1.335 | 1.668 |
Viscous resistance [N] | 17.61 | 26.43 | 16.54 | 24.90 | 6.07 | 5.79 |
Pressure resistance [N] | 2.73 | 5.40 | 2.52 | 5.10 | 7.69 | 5.56 |
Total resistance [N] | 20.34 | 31.83 | 19.06 | 30.00 | 6.29 | 5.75 |
Parameters | Values |
---|---|
Velocity | 1.335 and 1.668 |
Air layer thickness | 4, 6, and 8 |
Number of injector nozzles | 4, 6, and 8 units |
Angle of injection | , , and |
Total Resistance (), in N Gross Power Savings (), in % Net Power Savings (), in % | |||||||
---|---|---|---|---|---|---|---|
Velocity [] | 1.335 | 1.668 | |||||
Angle [°] | 5 | 15 | 25 | 5 | 15 | 25 | |
Number of Injections Nozzles | Air Layer Thickness | ||||||
4 | 4 | 17.96 5.77 1.83 | 18.00 5.56 1.62 | 18.56 2.62 −1.32 | 26.24 12.53 10.03 | 26.50 11.67 9.16 | 27.40 8.67 6.16 |
6 | 16.98 10.91 5.01 | 17.00 10.81 4.91 | 17.64 7.45 1.55 | 25.66 14.47 10.72 | 25.94 13.53 9.79 | 26.44 11.87 8.12 | |
8 | 16.50 13.43 5.55 | 16.64 12.70 4.82 | 17.06 10.49 2.61 | 25.30 15.67 10.66 | 25.50 15.00 10.00 | 26.10 13.00 8.00 | |
6 | 4 | 16.60 12.91 8.97 | 16.94 11.12 7.18 | 17.02 10.70 6.76 | 26.16 12.80 10.30 | 26.60 11.33 8.83 | 26.90 10.33 7.83 |
6 | 15.68 17.73 11.83 | 15.76 17.31 11.41 | 15.90 16.58 10.68 | 25.26 15.80 12.05 | 25.80 14.00 10.25 | 26.26 12.47 8.72 | |
8 | 15.46 18.89 11.01 | 15.54 18.47 10.59 | 15.60 18.15 10.27 | 25.04 16.53 11.53 | 25.20 16.00 11.00 | 25.38 15.40 10.40 | |
8 | 4 | 16.74 12.17 8.23 | 16.98 11.12 6.97 | 17.10 10.28 6.34 | 26.66 11.13 8.63 | 27.10 9.67 7.16 | 27.16 9.47 6.96 |
6 | 15.98 16.16 10.26 | 16.30 14.48 8.58 | 16.42 13.85 7.95 | 25.22 15.93 12.19 | 25.76 14.13 10.39 | 25.80 14.00 10.25 | |
8 | 15.56 18.36 10.48 | 15.98 16.16 8.28 | 16.16 15.22 7.34 | 24.26 19.13 14.13 | 24.60 18.00 13.00 | 24.64 17.87 12.86 |
Degrees of Freedom | Sum of Square | Mean of the Sum of Squares | F-Ratio | p-Value | |
---|---|---|---|---|---|
Velocity | 1 | 1165.0 | 1165.0 | 9652.35 | |
Number of Injection nozzles | 2 | 7 | 3.5 | 28.83 | |
Air layer thickness | 2 | 19.4 | 9.7 | 80.57 | |
Injection angle | 2 | 2.9 | 1.5 | 12.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bispo, R.L.P.; Souza, J.A.; Caprace, J.-D.; Ordonez, J.C.; Marques, C.H. A Parametric Study on Air Lubrication for Ship Energy Efficiency. J. Mar. Sci. Eng. 2024, 12, 2309. https://doi.org/10.3390/jmse12122309
Bispo RLP, Souza JA, Caprace J-D, Ordonez JC, Marques CH. A Parametric Study on Air Lubrication for Ship Energy Efficiency. Journal of Marine Science and Engineering. 2024; 12(12):2309. https://doi.org/10.3390/jmse12122309
Chicago/Turabian StyleBispo, Raul Lima Portela, Jeferson Avila Souza, Jean-David Caprace, Juan Carlos Ordonez, and Crístofer Hood Marques. 2024. "A Parametric Study on Air Lubrication for Ship Energy Efficiency" Journal of Marine Science and Engineering 12, no. 12: 2309. https://doi.org/10.3390/jmse12122309
APA StyleBispo, R. L. P., Souza, J. A., Caprace, J.-D., Ordonez, J. C., & Marques, C. H. (2024). A Parametric Study on Air Lubrication for Ship Energy Efficiency. Journal of Marine Science and Engineering, 12(12), 2309. https://doi.org/10.3390/jmse12122309