Extent of Benthic Habitat Disturbance by Offshore Infrastructure
Abstract
1. Introduction
1.1. Background
1.2. Review
2. Methods
2.1. Study Areas
2.2. Multibeam Sonar Survey
2.3. Sediment and Faunal Sampling
2.4. Statistical Analysis
3. Results
3.1. Multibeam Sonar Backscatter
3.2. Sediment and Faunal Sampling
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasslides, J.; Able, K. Importance of shoreface sand ridges as habitat for fishes off the northeast coast of the United States. Fish. Bull. 2008, 106, 93–107. [Google Scholar]
- Yamini, O.A.; Mousavi, S.H.; Kavianpour, M.R.; Movahedi, A. Numerical modeling of sediment scouring phenomenon around offshore wind turbine pile in marine environment. Environ. Earth Sci. 2018, 77, 776. [Google Scholar] [CrossRef]
- Coughlin, M.; Long, M.; Doherty, P. Geological and geotechnical constraints in the Irish Sea for offshore renewable energy. J. Maps 2020, 16, 1758811. [Google Scholar] [CrossRef]
- Coates, D.A.; Deschutter, Y.; Vincx, M.; Vanaverbeke, J. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar. Environ. Res. 2014, 95, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bulleri, F. Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores. Mar. Ecol. Prog. Ser. 2005, 287, 53–65. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Glasby, T.M.; Airoldi, L.; Rivero, N.K.; Mayer-Pinto, M.; Johnston, E.L. Marine urbanization: An ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ. 2015, 13, 82–90. [Google Scholar] [CrossRef]
- Heery, E.C.; Bishop, M.J.; Critchley, L.P.; Bugnot, A.B.; Airoldi, L.; Mayer-Pinto, M.; Sheehan, E.V.; Coleman, R.A.; Loke, L.H.; Johnston, E.L.; et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 2017, 492, 31–48. [Google Scholar] [CrossRef]
- Thrush, S.F.; Dayton, P.K. Disturbance to marine benthic habitats by trawling and dredging: Implications for marine biodiversity. Ann. Rev. Ecol. Syst. 2002, 33, 449–473. [Google Scholar] [CrossRef]
- Byers, J.E.; Grabowski, J.H. Soft-sediment communities. In Marine Community Ecology and Conservation; Bertness, M.D., Bruno, J.F., Silliman, B.R., Stachowicz, J.J., Eds.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2014; pp. 227–249. [Google Scholar]
- Raffaelli, D.; Bell, E.; Weithoff, G.; Matsumoto, A.; Cruz-Motta, J.J.; Kershaw, P.; Parker, R.; Parry, D.; Jones, M. The ups and downs of benthic ecology: Considerations of scale, heterogeneity and surveillance for benthic-pelagic coupling. J. Exp. Mar. BioL. Ecol. 2003, 285, 191–203. [Google Scholar] [CrossRef]
- Pacheco, A.S.; González, M.T.; Bremner, J.; Oliva, M.; Heilmayer, O.; Laudien, J.; Riascos, J.M. Functional diversity of marine macrobenthic communities from sublittoral soft-sediment habitats off northern Chile. Helgoland Mar. Res. 2011, 65, 413–424. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Kadin, M.; Nascimento, F.J.; Tamelander, T.; Törnroos, A.; Bonaglia, S.; Bonsdorff, E.; Brüchert, V.; Gårdmark, A.; Järnström, M.; et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 2017, 23, 2179–2196. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.S.; Elliot, M. Ecology of Marine Sediments: From Science to Management, 2nd ed.; Oxford University Press: Oxford, UK, 2009; 225p. [Google Scholar]
- Barros, F.; Underwood, A.J.; Archambault, P. The influence of troughs and crests of ripple marks on the structure of subtidal benthic assemblages around rocky reefs. Estuar. Coast. Shelf Sci. 2004, 60, 781–790. [Google Scholar] [CrossRef]
- Ramey, P.A.; Grassle, J.P.; Grassle, J.F.; Petrecca, R.F. Small-scale, patchy distributions of infauna in hydrodynamically mobile continental shelf sands: Do ripple crests and troughs support different communities? Cont. Shelf Res. 2009, 29, 2222–2233. [Google Scholar] [CrossRef]
- Hallenbeck, T.R.; Kvitek, R.G.; Lindholm, J. Rippled scour depressions add ecologically significant heterogeneity to soft-bottom habitats on the continental shelf. Mar. Ecol. Prog. Ser. 2012, 468, 119–133. [Google Scholar] [CrossRef]
- Coco, G.; Murray, A.B.; Green, M.O. Sorted bed forms as self-organized patterns: 1. Model development. J. Geophys. Res. 2007, 112, F03015. [Google Scholar] [CrossRef]
- Murray, A.B.; Thieler, E.R. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and “rippled scour depressions”. Cont. Shelf Res. 2004, 24, 295–315. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Grant, W.D.; Tate, G.B. Rippled scour depressions on the inner continental shelf off central California. J. Sed. Petrol. 1984, 54, 1280–1291. [Google Scholar]
- Schwab, W.C.; Thieler, E.R.; Allen, J.R.; Foster, D.S.; Swift, B.A.; Denny, J.F. Influence of inner-continental shelf geologic framework on the evolution and behavior of the barrier-island system between Fire Island inlet and Shinnecock inlet, Long Island, New York. J. Coast. Res. 2000, 16, 408–422. [Google Scholar]
- Schwab, W.C.; Denny, J.F.; Butman, B.; Danforth, W.W.; Foster, D.S.; Swift, B.A.; Lotto, L.L.; Allison, M.A.; Thieler, E.R. Seafloor Characterization Offshore of the New York—New Jersey Metropolitan Area Using Side-Scan Sonar; U.S. Geological Survey Open-File Report 00-295; U.S. Geological Survey: Reston, VA, USA, 2000; 16p.
- Gutierrez, B.T.; Voulgais, G.; Thieler, E.R. Exploring the persistence of sorted bedforms on the inner continental shelf of Wrightsville Beach, North Carolina. Cont. Shelf Res. 2005, 25, 65–90. [Google Scholar] [CrossRef]
- Bellac, V.K.; Boe, R.; Rise, L.; Siagstad, D.; Longva, O.; Dolan, M. Rippled scour depressions on the continental shelf bank slopes off Nordlan and Troms, Northern Norway. Cont. Shelf Res. 2010, 30, 1056–1069. [Google Scholar] [CrossRef]
- De Falco, G.; Budillon, F.; Conforti, A.; Di Bitetto, M.; Di Martino, G.; Innangi, S.; Simeone, S.; Tonielli, R. Sorted bedforms over transgressive deposits along the continental shelf of western Sardinia (Mediterranean Sea). Mar. Geol. 2015, 359, 75–88. [Google Scholar] [CrossRef]
- Black, K.P.; Healy, T.R. Formation of ripple bands in a wave-convergence zone. J. Sed. Petrol. 1988, 58, 195–207. [Google Scholar]
- Nemeth, A.A.; Hulscher, S.J.M.H.; de Vriend, H.J. Modelling sand wave migration in shallow shelf seas. Cont. Shelf Res. 2002, 22, 2795–2806. [Google Scholar] [CrossRef]
- Leenders, S.; Damveld, J.H.; Schouten, J.; Hoekstra, R.; Roetert, T.J.; Borsje, B.W. Numerical modeling of the migration direction of tidal sand waves over sand banks. Coast. Eng. 2021, 163, 103790. [Google Scholar] [CrossRef]
- Dey, S.; Papanicolaou, A. Sediment Threshold under Stream Flow: A State-of-the-Art Review. J. Civil Eng. 2008, 12, 45–60. [Google Scholar] [CrossRef]
- Whitehouse, R.J.; Harris, J.M.; Sutherland, J.; Rees, J. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 2011, 62, 73–88. [Google Scholar] [CrossRef]
- Den Boon, J.H.; Sutherland, J.; Whitehouse, R.; Soulsby, R.; Stam, C.J.M.; Verhoeven, K.; Høgedal, M.; Hald, T. Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In Proceedings of the European Wind Energy Conference, EWEC, London, UK, 22–25 November 2004. [Google Scholar]
- Neill, S.P.; Litt, E.J.; Couch, S.J.; Davies, A.G. The impact of tidal stream turbines on large-scale sediment dynamics. Renew. Energy 2009, 34, 2803–2812. [Google Scholar] [CrossRef]
- Davidson-Arnott, R. Wave-Dominated Coasts. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 3, pp. 73–116. [Google Scholar]
- Butman, B.; Alexander, P.S.; Scottic, A.; Beardley, R.C.; Anderson, S.P. Large internal waves in Massachusetts Bay transport sediment offshore. Cont. Shelf Res. 2006, 26, 2029–2049. [Google Scholar] [CrossRef]
- Lavelle, J.W.; Swift, D.J.P.; Gadd, P.E.; Stubblefield, W.L.; Case, F.N.; Brashhear, H.R.; Haff, K.W. Fair weather and storm sand transport on the Long Island, New York, inner shelf. Sedimentology 1978, 25, 823–842. [Google Scholar] [CrossRef]
- Harris, C.K.; Signell, R.P. Circulation and sediment transport in the vicinity of the Hudson Shelf Valley. In Estuarine and Coastal Modeling: Proceedings of the 6th International Conference, New Orleans, LA, USA, 3–5 November 1999; Spaulding, M.A., Ed.; The American Society of Civil Engineers (ASCE): Reston, VA, USA, 1999; pp. 380–394. [Google Scholar]
- Butman, B.; Alexander, P.S.; Harris, C.K.; Lightsom, F.S.; Martini, M.A.; ten Brink, M.B.; Traykovski, P.A. Oceanographic Observations in the Hudson Shelf Valley, December 1999–April 2000: Data Report; U.S. Geological Survey Open File Report 02-217; U.S. Geological Survey: Reston, VA, USA, 2003.
- Trowbridge, J.H. A mechanism for the formation and maintenance of shore-oblique sand ridges on storm-dominated shelves. J. Geophys. Res. 1995, 100, 16071–16086. [Google Scholar] [CrossRef]
- Calvete, D.; Falques, A.; DeSwart, H.E.; Walgreen, M. Modeling the formation of shore-face connected sand ridges on storm-dominated inner shelves. J. Fluid Mech. 2001, 441, 169–193. [Google Scholar] [CrossRef]
- Liu, S.; Goff, J.A.; Flood, R.D.; Christensen, B.; Austin, J.A. Sorted bedforms off western Long Island, New York, USA: Asymmetrical morphology and twelve-year migration record. Sedimentology 2018, 65, 2202–2222. [Google Scholar] [CrossRef]
- Ferrini, V.L.; Flood, R.D. A comparison of rippled scour depressions identified with multibeam sonar: Evidence of sediment transport in inner shelf environments. Cont. Shelf Res. 2005, 25, 1979–1995. [Google Scholar] [CrossRef]
- Schwab, W.C.; Baldwin, W.E.; Warner, J.C.; List, J.H.; Denny, J.F.; Liste, M.; Safak, I. Change in morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York between 2011 and 2014: Analysis of hurricane impact. Mar. Geol. 2017, 391, 48–64. [Google Scholar] [CrossRef]
- Davis, N.; VanBlaricom, G.R.; Dayton, P.K. Man-made structures on marine sediments: Effects on adjacent benthic communities. Mar. Biol. 1982, 70, 295–303. [Google Scholar] [CrossRef]
- Ambrose, R.F.; Anderson, T.W. Influence of an artificial reef on the surrounding infaunal community. Mar. Biol. 1990, 107, 41–52. [Google Scholar] [CrossRef]
- Barros, F.; Underwood, A.J.; Lindegarth, M. The influence of rocky reefs on structure of benthic macrofauna in nearby soft-sediments. Estuar. Coast. Shelf Sci. 2001, 52, 191–199. [Google Scholar] [CrossRef]
- Dannheim, J.; Bergstrom, L.; Birchenough, S.N.R.; Brzana, R.; Boon, A.R.; Coolen, J.W.P.; Dauvin, J.-C.; De Mesel, I.; Derweduwen, J.; Gill, A.B.; et al. Benthic effects of offshore renewables: Identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 2020, 77, 1092–1108. [Google Scholar] [CrossRef]
- Hemery, L.G. Changes in Benthic and Pelagic Habitats Caused by Marine Renewable Energy Devices. In Ocean Energy Systems-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World; Copping, A.E., Hemery, L.G., Eds.; Ocean Energy Systems (OES): Lisbon, Portugal, 2020; pp. 104–125. [Google Scholar]
- Games, K.P.; Gordon, D.I. Study of sand wave migration over five years as observed in two windfarm development areas, and the implications for building on moving substrates in the North Sea. Earth Environ. Sci. Trans. R. Soc. Edinb. 2014, 05, 241–249. [Google Scholar] [CrossRef]
- Bokuniewicz, H.J.; Cerrato, R.M.; Flagg, C.; Flood, R.; Huang, Y.; Lonsdale, D.; Schweitzer, K.; Swanson, R.; Willig, K.; Wilson, R. Impacts of Ocean Sewage Treatment Plant Outfalls; Draft Final Report, NYSDEC/SoMAS; 2020; 72p. Available online: https://extapps.dec.ny.gov/docs/fish_marine_pdf/dmrsomasoutfalls.pdf (accessed on 13 October 2024).
- Schweitzer, K. The Seasonal and Spatial Effects of a Sewage Outfall on the Planktonic Community Composition and Abundance. Master’s Thesis, Stony Brook University, Stony Brook, NY, USA, 2019; 92p. [Google Scholar]
- Flanagan, A.M.; Flood, R.D.; Maher, N.P.; Cerrato, R.M. Quantitatively characterizing benthic community-habitat relationships in soft-sediment, nearshore environments to yield useful results for management. J. Environ. Manang. 2019, 249, 109361. [Google Scholar] [CrossRef]
- Christensen, B.A.; Weltner, R.; Aluck, R.; Bissett, D. State of seafloor and sewage outfall pipes offshore Jones Beach, NY. In Vivo: The Publication of the Metropolitan Association of College and University Biologists. In Proceedings of the 43rd annual MACUB Conference, Malloy College, Rockville Center, NY, USA, 23 October 2010; p. 32. [Google Scholar]
- Flanagan, A.M.; Flood, R.D.; Frisk, M.G.; Garza, C.D.; Lopez, G.R.; Maher, N.P.; Cerrato, R.M. The relationship between observational scale and explained variance in benthic communities. PLoS ONE 2018, 13, e0189313. [Google Scholar] [CrossRef] [PubMed]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Pub. Co.: Austin, TX, USA, 1974; 64p. [Google Scholar]
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Tichý, L.; Chytrý, M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 2006, 17, 809–818. [Google Scholar] [CrossRef]
- Rao, C.R. The use and interpretation of principal components analysis in applied research. Sankhyā Ser. A 1964, 26, 329–358. [Google Scholar]
- Jongman, R.H.G.; ter Braak, C.J.F.; Van Tongeren, O.F.R. 1995. Data Analysis in Community and Landscape Ecology; Cambridge University Press: New York, NY, USA, 1995; 299p. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual; Microcomputer Power: Ithaca, NY, USA, 2002; 500p. [Google Scholar]
- Diaz, R.J.; Cutter, G.R., Jr.; Hobbs, C.H. Potential impacts of sand mining offshore of Maryland and Delaware: Part 2—Biological considerations. J. Coast. Res. 2004, 20, 61–69. [Google Scholar] [CrossRef]
- Morgan, M.A.; Woodhead, P.M.J. The life history and sexual biology of Pseudunciola obliquua (Crustacea: Amphipoda) in the New York Bight. Estuar. Coast. Shelf Sci. 1984, 18, 639–650. [Google Scholar] [CrossRef]
- Franz, D.R.; Tancredi, J.T. Secondary production of the amphipod Ampelisca abdita Mills and its importance in the diet of juvenile winter flounder (Pleuronectes americanus) in Jamaica Bay, New York. Estuar. Coasts 1992, 15, 193–203. [Google Scholar] [CrossRef]
- Steimle, F.W.; Pikanowski, R.A.; Macmillan, D.G.; Zetlin, C.A.; Wilk, S.J. Demersal Fish and American Lobster Diets in the Lower Hudson—Raritan Estuary; NOAA Technical Memorandum NMFS-NE-161; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2000; 106p.
- Cerrato, R.M. Long-term and large-scale patterns in the benthic communities of the Lower Bay Complex. In The Hudson River Ecosystem; Levinton, J.S., Waldman, J.R., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 242–465. [Google Scholar]
N*Control | N*Outfall | ||||
Species | rpb | p-Value | Species | rpb | p-Value |
Phyllodoce arenae | 0.384 | 0.018 | Acanthohaustorius millsi | 0.502 | 0.0003 |
Prionospio pygmaeus | 0.356 | 0.027 | Paraonis fulgens | 0.409 | 0.0111 |
Spiophanes bombyx | 0.321 | 0.034 | Dispio uncinata | 0.400 | 0.0247 |
Chiridotea tuftsi | 0.354 | 0.0211 | |||
Protohaustorius wigleyi | 0.331 | 0.0332 | |||
Rhepoxynuis epistomus | 0.330 | 0.0271 | |||
S*Control | S*Outfall | ||||
Species | rpb | p-Value | Species | rpb | p-Value |
Notomastus sp. | 0.376 | 0.0162 | Pseudunciola obliquua | 0.579 | <0.0001 |
Spisula solidissima | 0.361 | 0.0188 | Euclymene zonalis | 0.525 | 0.0005 |
Syllides setosa | 0.523 | 0.0004 | |||
Ceriantheopsis americana | 0.420 | 0.0150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrato, R.M.; Flood, R.D.; Bopp, J.; Bokuniewicz, H.J. Extent of Benthic Habitat Disturbance by Offshore Infrastructure. J. Mar. Sci. Eng. 2024, 12, 2142. https://doi.org/10.3390/jmse12122142
Cerrato RM, Flood RD, Bopp J, Bokuniewicz HJ. Extent of Benthic Habitat Disturbance by Offshore Infrastructure. Journal of Marine Science and Engineering. 2024; 12(12):2142. https://doi.org/10.3390/jmse12122142
Chicago/Turabian StyleCerrato, Robert M., Roger D. Flood, Justin Bopp, and Henry J. Bokuniewicz. 2024. "Extent of Benthic Habitat Disturbance by Offshore Infrastructure" Journal of Marine Science and Engineering 12, no. 12: 2142. https://doi.org/10.3390/jmse12122142
APA StyleCerrato, R. M., Flood, R. D., Bopp, J., & Bokuniewicz, H. J. (2024). Extent of Benthic Habitat Disturbance by Offshore Infrastructure. Journal of Marine Science and Engineering, 12(12), 2142. https://doi.org/10.3390/jmse12122142