Exploration of the Formation Mechanism of Underground Brine Based on Hydrodynamic Environment Analysis Using Grain-Size Data of One Drilling Core
Abstract
1. Introduction
2. Materials and Methods
2.1. Core Lz908
2.2. Analysis of Core Sediment Samples
2.2.1. Grain Size
2.2.2. Water Content and Salinity
2.2.3. Calcium Carbonate
2.3. Methods
2.3.1. Grain Size Parameter
2.3.2. Discriminant Analysis
2.3.3. CM Diagram
2.3.4. Cumulative Probability Curve
3. Results
3.1. Distribution of Brine Layers
3.2. Bivariate Plots of Grain Size Parameters
3.3. Linear Discriminant Function (LDF)
3.4. Grain Size Representation by CM Patterns
3.5. Visher Diagrams
4. Discussion
5. Conclusions
- (1)
- Both the B2-1 and B3-1 brine layers are located in the transitional stage of marine transgression and regression, with relatively low hydrodynamic environments. During the process of regression, residual seawater from marine transgression formed lagoon environments. The relatively arid climate led to a gradual increase in salinity levels within the lagoon, resulting in the formation of early-stage saline water. This process served as a primary mechanism for large-scale underground coastal brine.
- (2)
- The B3-2 brine layer is located within the marine transgression layer, with relatively weak hydrodynamic conditions. The maximum initiation energy for sediment transport by environmental water flow is relatively stable, while the average kinetic energy of hydrodynamics exhibits significant variability. This indicates an environment heavily influenced by riverine processes, which we classified as a hypersaline environment within a deltaic lagoon. We proposed that the brine formation occurred in a setting that is typically smaller in scale than the residual lagoons formed during marine regression.
- (3)
- The B1 and B2-2 layers are entirely located within the tidal delta environments, characterized by hydrodynamic conditions consistent with bifurcating river channels. This environment is classified as a low-tide flat. When seawater has sufficient time to evaporate on the vast flat tidal flats, it leads to the downward infiltration and deposition of hypersaline water. With the fluctuation of tides, the sedimentation process of seawater repeats, the underground supersaline water will eventually form and deposit brine.
- (4)
- For brine to form and be retained, fine-grain-size materials must be deposited under weak hydrodynamic conditions in the strata above and below the brine layer, serving as impermeable layers to protect the brine. River dynamics often influence this process. Overall, the tumultuous interactions between the land and the sea, and the development of river deltas, create favorable conditions for the replenishment, migration, and storage of underground brine resources in the Laizhou Bay area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, X.; Zhang, Y.; Fu, T.; Sun, Z.; Lei, B.; Li, M.; Guo, X. The two salinity peaks mode of marine salt supply to coastal underground brine during a single tidal cycle. Front. Mar. Sci. 2024, 10, 1324163. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Chen, L.; Xiao, C.; Liu, C. Chlorine isotopic constraint on contrastive genesis of representative coastal and inland shallow brine in China. J. Geochem. Explor. 2016, 170, 21–29. [Google Scholar] [CrossRef]
- Bottomley, D.J.; Katz, A.; Chan, L.H.; Starinsky, A.; Douglas, M.; Clark, I.D.; Raven, K.G. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem. Geol. 1999, 155, 295–320. [Google Scholar] [CrossRef]
- Starinsky, A.; Katz, A. The formation of natural cryogenic brines. Geochim. Cosmochim. Acta 2003, 67, 1475–1484. [Google Scholar] [CrossRef]
- Hanor, J.S.; Mcintosh, J.C. Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin. Geofluids 2007, 7, 227–237. [Google Scholar] [CrossRef]
- Bein, A.; Arad, A. Formation of saline groundwaters in the Baltic region through freezing of seawater during glacial periods. J. Hydrol. 1992, 140, 75–87. [Google Scholar] [CrossRef]
- Herut, B.; Starinsky, A.; Katz, A.; Bein, A. The role of seawater freezing in the formation of subsurface brines. Geochim. Cosmochim. Acta 1990, 54, 13–21. [Google Scholar] [CrossRef]
- Bottomley, D.J.; Conrad Gregoire, D.; Raven, K.G. Saline ground waters and brines in the Canadian Shield: Geochemical and isotopic evidence for a residual evaporite brine component. Geochim. Cosmochim. Acta 1994, 58, 1483–1498. [Google Scholar] [CrossRef]
- Curzi, M.; Aldega, L.; Billi, A.; Boschi, C.; Carminati, E.; Vignaroli, G.; Viola, G.; Bernasconi, S.M. Fossil chemical-physical (dis)equilibria between paleofluids and host rocks and their relationship to the seismic cycle and earthquakes. Earth Sci. Rev. 2024, 254, 104801. [Google Scholar] [CrossRef]
- Rubey, W.W. Geologic History of Sea Water. Bull. Geol. Soc. Amer. 1951, 62, 1111–1147. [Google Scholar] [CrossRef]
- Gerber, C.; Vaikm, E.R.; Aeschbach, W.; Babre, A.; Jiang, W.; Leuenberger, M.; Lu, Z.; Mokrik, R.; Müller, P.; Raidla, V.; et al. Using 81Kr and Noble Gases to Characterize and Date Groundwater and Brines in the Baltic Artesian Basin on the One-Million-Year Timescale. Geochim. Cosmochim. Acta 2017, 205, 187–210. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Sass, E.; Katz, A. The evolution of marine evaporitic brines in inland basins: The Jordan-Dead Sea Rift valley. Geochim. Cosmochim. Acta 2004, 68, 1763–1775. [Google Scholar] [CrossRef]
- Curzi, M.; Caracausi, A.; Rossetti, F.; Rabiee, A.; Billi, A.; Carminati, E.; Aldega, L.; Bernasconi, S.M.; Boschi, C.; Drivenes, K.; et al. From Fossil to Active Hydrothermal Outflow in the Back-Arc of the Central Apennines (Zannone Island, Italy). Geochem. Geophys. Geosystems 2022, 23, e2022GC010474. [Google Scholar] [CrossRef]
- Curzi, M.; Bernasconi, S.M.; Billi, A.; Boschi, C.; Aldega, L.; Franchini, S.; Albert, R.; Gerdes, A.; Barberio, M.D.; Looser, N.; et al. U-Pb age of the 2016 Amatrice earthquake causative fault (Mt. Gorzano, Italy) and paleo-fluid circulation during seismic cycles inferred from inter- and co-seismic calcite. Tectonophysics 2021, 819, 229076. [Google Scholar] [CrossRef]
- Hardie, L.A.; Eugster, H.P. Evaporation of seawater: Calculated mineral sequences. Sience 1980, 208, 498–500. [Google Scholar]
- Lu, H.; Peng, T.; Liou, T. Identification of the origin of salinization in groundwater using multivariate statistical analysis and geochemical modeling: A case study of Kaohsiung, Southwest Taiwan. Environ. Geol. 2008, 55, 339–352. [Google Scholar] [CrossRef]
- Yang, F.; Jia, C.; Chang, W.; Yang, H.; Wang, C.; Fan, Q. Integrating hydrochemical and microbial methods to identify hydraulic connections between three saltworks in southern Laizhou Bay, China. Hydrogeol. J. 2022, 30, 1847–1862. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, E.; Zhang, Y.; Xin, L. Environmental evolution in the salt-water intrusion area south of Laizhou Bay since late Pleistocene. J. Geogr. Sci. 2008, 18, 37–45. [Google Scholar] [CrossRef]
- Han, Y.; Meng, G.; Wang, S. A preliminary study on the distribution and genesis of underground brine in the littoral plain of Laizhou Bay in the Bohai Sea. Chin. J. Oceanol. Limnol. 1993, 11, 46–56. [Google Scholar]
- Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. J. Hydrol. 2014, 508, 12–27. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Chen, L.; Shan, H.; Xiao, C.; Lu, Y.; Liu, C.; Cai, H. Genesis of salinized groundwater in Quaternary aquifer system of coastal plain, Laizhou Bay, China: Geochemical evidences, especially from bromine stable isotope. Appl. Geochem. 2015, 59, 155–165. [Google Scholar] [CrossRef]
- He, Z.; Ma, C.; Zhou, A.; Qi, H.; Liu, C.; Cai, H.; Zhu, H. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China. Appl. Geochem. 2018, 90, 129–141. [Google Scholar] [CrossRef]
- Zhao, N.; Xu, X.; Yu, H.; Yao, J.; Su, Q.; Peng, S. The color reflectance of marine-terrigenous deposits in LZ908 borehole in south coastal plain of the Laizhou Bay. Acta Oceanol. Sin 2011, 30, 53–59. [Google Scholar] [CrossRef]
- Yi, L.; Yu, H.; Ortiz, J.D.; Xu, X.; Chen, S.; Ge, J.; Hao, Q.; Yao, J.; Shi, X.; Peng, S. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 329–330, 101–117. [Google Scholar] [CrossRef]
- Yi, L.; Yu, H.; Ortiz, J.D.; Xu, X.; Qiang, X.; Huang, H.; Shi, X.; Deng, C. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sediment. Geol. 2012, 281, 88–100. [Google Scholar] [CrossRef]
- Yi, L.; Lai, Z.; Yu, H.; Xu, X.; Su, Q.; Yao, J.; Wang, X.; Shi, X. Chronologies of sedimentary changes in the south Bohai Sea, China: Constraints from luminescence and radiocarbon dating. Boreas 2013, 42, 267–284. [Google Scholar] [CrossRef]
- Yao, J.; Yu, H.; Xu, X.; YI, L.; Chen, G.; Su, Q. Paleoenvironmental changes during the late Quaternary as inferred from foraminifera assemblages in the Laizhou Bay. Acta. Oceanol. Sin. 2014, 33, 10–18. [Google Scholar] [CrossRef]
- Yi, L.; Deng, C.; Xu, X.; Yu, H.; Qiang, X.; Jiang, X.; Chen, Y.; Su, Q.; Chen, G.; Li, P.; et al. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China. Sediment. Geol. 2015, 319, 1–12. [Google Scholar] [CrossRef]
- Tian, M.; Zhu, H.T.; Feng, J.; Zhao, Q.S.; Scholz, M. Evaluation and analysis of underground brine resources in the southern coastal area of Laizhou Bay. IOP conference series. Earth Environ. Sci. 2016, 39, 12033. [Google Scholar]
- Gao, M.; Hou, G.; Guo, F. Conceptual Model of Underground Brine Formation in the Silty Coast of Laizhou Bay, Bohai Sea, China. J. Coastal Res. 2016, 74, 157–165. [Google Scholar] [CrossRef]
- Jia, C.; Yang, F.; Liu, S.; Wang, C.; Chang, W. Paleoclimatic interpretation in southern Laizhou Bay since the late Pleistocene: Evidence from groundwater and sedimentary strata. Cont. Shelf Res. 2022, 237, 104676. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, G. Analysis of River Channel Changes and Sedimentary Environment in the River Downstream of Mihe River. J. Hebei Geo. Univ. 2019, 42, 47–50. (In Chinese) [Google Scholar]
- Rajganapathi, V.C.; Jitheshkumar, N.; Sundararajan, M.; Bhat, K.H.; Velusamy, S. Grain size analysis and characterization of sedimentary environment along Thiruchendur coast, Tamilnadu, India. Arab. J. Geosci. 2013, 6, 4717–4728. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sed. Pet. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Mutaqin, B.W.; Isnain, M.N.; Ningsih, R.L.; Darmawan, H. Suratman Grain size and sedimentation process in the Anak Krakatau coastal area of Indonesia. Results Earth Sci. 2024, 2, 100018. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional mechanisms from the size analysis of clastic sediments. J. Sediment. Petrol. 1964, 34, 73–83. [Google Scholar]
- Passega, R. Texture as characteristic of clastic deposition. Bull. Am. Assoc. Pet. Geol. 1957, 41, 152–1984. [Google Scholar]
- Passega, R. Significance of CM diagrams of sediments deposited by suspensions. Sedimentology 1977, 24, 723–733. [Google Scholar] [CrossRef]
- Passega, R. Grain size representation by CM patterns as a geologic tool. J. Sediment. Petrol. 1964, 34, 830–847. [Google Scholar] [CrossRef]
- Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Su, Q.; Yu, H.; Xu, X.; Chen, B.; Yang, L.; Fu, T.; Liu, W.; Chen, G. Using Principal Component Analysis (PCA) Combined with Multivariate Change-Point Analysis to Identify Brine Layers Based on the Geochemistry of the Core Sediment. Water 2023, 15, 1926. [Google Scholar] [CrossRef]
- Baiyegunhi, T.L.; Liu, K.; Gwavava, O.; Baiyegunhi, C. Textural characteristics, mode of transportation and depositional environment of the Cretaceous sandstone in the Bredasdorp Basin, off the south coast of South Africa: Evidence from grain size analysis. Open Geosci. 2020, 12, 1512–1532. [Google Scholar] [CrossRef]
- Yi, L.; Ye, X.; Chen, J.; Li, Y.; Long, H.; Wang, X.; Du, J.; Zhao, S.; Deng, C. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: Constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene. Quat. Int. 2014, 349, 316–326. [Google Scholar] [CrossRef]
- Yi, L.; Deng, C.; Tian, L.; Xu, X.; Jiang, X.; Qiang, X.; Qin, H.; Ge, J.; Chen, G.; Su, Q.; et al. Plio-Pleistocene evolution of Bohai Basin (East Asia): Demise of Bohai Paleolake and transition to marine environment. Sci. Rep. 2016, 6, 29403. [Google Scholar] [CrossRef]
- Lee, S.; Currell, M.; Cendón, D.I. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance. Sci. Total Environ. 2016, 544, 995–1007. [Google Scholar] [CrossRef]
- Barnes, R.S.K. Coastal Lagoons; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Zhang, Y.; Xiao, X.; Sun, Z.; Lei, B.; Li, M.; Guo, X.; Fu, T.; Xing, C. Salt dynamic changes between seawater and phreatic brine in muddy tidal flats under tidal influence. J. Hydrol. 2024, 634, 131044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Yu, Y.; Chen, M.; Fu, T.; Lyu, W.; Liu, W. Exploration of the Formation Mechanism of Underground Brine Based on Hydrodynamic Environment Analysis Using Grain-Size Data of One Drilling Core. J. Mar. Sci. Eng. 2024, 12, 2122. https://doi.org/10.3390/jmse12122122
Su Q, Yu Y, Chen M, Fu T, Lyu W, Liu W. Exploration of the Formation Mechanism of Underground Brine Based on Hydrodynamic Environment Analysis Using Grain-Size Data of One Drilling Core. Journal of Marine Science and Engineering. 2024; 12(12):2122. https://doi.org/10.3390/jmse12122122
Chicago/Turabian StyleSu, Qiao, Ying Yu, Mingjun Chen, Tengfei Fu, Wenzhe Lyu, and Wenquan Liu. 2024. "Exploration of the Formation Mechanism of Underground Brine Based on Hydrodynamic Environment Analysis Using Grain-Size Data of One Drilling Core" Journal of Marine Science and Engineering 12, no. 12: 2122. https://doi.org/10.3390/jmse12122122
APA StyleSu, Q., Yu, Y., Chen, M., Fu, T., Lyu, W., & Liu, W. (2024). Exploration of the Formation Mechanism of Underground Brine Based on Hydrodynamic Environment Analysis Using Grain-Size Data of One Drilling Core. Journal of Marine Science and Engineering, 12(12), 2122. https://doi.org/10.3390/jmse12122122