Assessment of Beach Erosion Vulnerability in the Province of Valencia, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Coastal Vulnerability Index
2.2.1. Beach Width
2.2.2. Beach Erosion/Accretion Rate
2.2.3. Dune Width
2.2.4. Wave Height
2.2.5. Relative Coastal Flood Level
2.2.6. Submerged Vegetation
- Posidonia oceanica: Its dense and flexible leaves act as a natural barrier that dissipates wave energy and retains suspended sediment. Roots and rhizomes penetrate deep into the seabed, anchoring sediments [32]. Dead leaves, known as wrack, accumulate on beaches, forming a protective layer that cushions the impact of waves and prevents sand loss [33].
- Cymodocea nodosa: Although to a lesser extent than P. oceanica, Cymodocea meadows also contribute to dissipating wave energy. In addition, its roots and rhizomes penetrate the seabed, anchoring sediments and preventing them from being carried away by marine currents [34].
- Caulerpa prolifera: Although they are invasive species in the study area, these algae contribute to the formation of reefs and the stabilization of seabeds [35].
2.2.7. Upper Depth Limit of Submerged Vegetation
2.2.8. Percentage of Vegetated Dune
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramesh, R.; Chen, Z.; Cummins, V.; Day, J.; D’Elia, C.; Dennison, B.; Forbes, D.L.; Glaeser, B.; Glaser, M.; Glavovic, B.; et al. Land–Ocean Interactions in the Coastal Zone: Past, present & future. Anthropocene 2015, 12, 85–98. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Alexandrakis, G. Coastal erosion vulnerability and risk assessment focusing in tourism beach use. Geophys. Res. Abstr. 2016, 18, EPSC2016-5563. Available online: https://ui.adsabs.harvard.edu/abs/2016EGUGA..18.5563A (accessed on 15 September 2024).
- Pethick, J.S.; Crooks, S. Development of a coastal vulnerability index: A geomorphological perspective. Environ. Conserv. 2000, 27, 359–367. [Google Scholar] [CrossRef]
- Pranzini, E.; Wetzel, L.; Williams, A.T. Aspects of coastal erosion and protection in Europe. J. Coast. Conserv. 2015, 19, 445–459. [Google Scholar] [CrossRef]
- Eurostat. Coastal Regions: People Living Along the Coastline, Integration of NUTS 2010 and Latest Population Grid. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Coastal_regions_-_population_statistics (accessed on 9 September 2024).
- Adger, W.N.; Agnew, M. New indicators of vulnerability and adaptive capacity. Tech. Rep. Number 7. Tyndall Cent. Clim. Chang. Res. Norwich 2004, 122, 6–114. [Google Scholar]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Gornitz, V. Vulnerability of the East Coast, USA to future sea level rise. J Coast. Res 1990, 9, 201–237. Available online: https://www.jstor.org/stable/44868636 (accessed on 7 October 2024).
- Ramieri, E.; Hartley, A.; Barbanti, A.; Santos, F.D.; Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for assessing coastal vulnerability to climate change. ETC CCA Tech. Pap. 2011, 1, 1–93. [Google Scholar]
- Dike, E.C.; Amaechi, C.V.; Beddu, S.B.; Weje, I.I.; Ameme, B.G.; Efeovbokhan, O.; Oyetunji, A.K. Coastal Vulnerability Index sensitivity to shoreline position and coastal elevation parameters in the Niger Delta region, Nigeria. Sci. Total Environ. 2024, 919, 170830. [Google Scholar] [CrossRef]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Atlantic Coast; U.S. Geological Survey: Reston, VA, USA, 2000; Open-File Report 99-593. [CrossRef]
- Jana, S. Micro-level coastal vulnerability assessment in relation to post-Aila landscape alteration at the fragile coastal stretch of the Sagar Island, India. Reg. Stud. Mar. Sci. 2020, 33, 100908. [Google Scholar] [CrossRef]
- Sheik Mujabar, P.; Chandrasekar, N. Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Nat. Hazards 2013, 69, 1295–1314. [Google Scholar] [CrossRef]
- Sankari, T.S.; Chandramouli, A.R.; Gokul, K.; Surya, S.S.M.; Saravanavel, J. Coastal Vulnerability Mapping Using Geospatial Technologies in Cuddalore-Pichavaram Coastal Tract, Tamil Nadu, India. Aquat. Procedia 2015, 4, 412–418. [Google Scholar] [CrossRef]
- Mohd, F.A.; Abdul Maulud, K.N.; Karim, O.A.; Begum, R.A.; Awang, N.A.; Ahmad, A.; Wan Mohamed Azhary, W.A.H.; Kamarudin, M.K.A.; Jaafar, M.; Wan Mohtar, W.H.M. Comprehensive coastal vulnerability assessment and adaptation for Cherating-Pekan coast, Pahang, Malaysia. Ocean Coast. Manag. 2019, 182, 104948. [Google Scholar] [CrossRef]
- López Royo, M.; Ranasinghe, R.; Jiménez, J.A. A Rapid, Low-Cost Approach to Coastal Vulnerability Assessment at a National Level. J. Coast. Res. 2016, 32, 932–945. [Google Scholar] [CrossRef]
- Abuodha, P.A.O.; Woodroffe, C.D. Assessing vulnerability to sea-level rise using a coastal sensitivity index: A case study from southeast Australia. J. Coast. Conserv. 2010, 14, 189–205. [Google Scholar] [CrossRef]
- Cogswell, A.; Greenan, B.J.W.; Greyson, P. Evaluation of two common vulnerability index calculation methods. Ocean Coast. Manag. 2018, 160, 46–51. [Google Scholar] [CrossRef]
- El-Zein, A.; Ahmed, T.; Tonmoy, F. Geophysical and social vulnerability to floods at municipal scale under climate change: The case of an inner-city suburb of Sydney. Ecol. Indic. 2021, 121, 106988. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Shaw, P.; Rajput, P. Coastal vulnerability map of Jagatsinghpur District, Odisha, India: A satellite based approach to develop two-dimensional vulnerability maps. Reg. Stud. Mar. Sci. 2023, 57, 102747. [Google Scholar] [CrossRef]
- Theocharidis, C.; Doukanari, M.; Kalogirou, E.; Christofi, D.; Mettas, C.; Kontoes, C.; Hadjimitsis, D.; Argyriou, A.V.; Eliades, M. Coastal Vulnerability Index (CVI) Assessment: Evaluating Risks Associated with Human-Made Activities along the Limassol Coastline, Cyprus. Remote Sens. 2024, 16, 3688. [Google Scholar] [CrossRef]
- Vieira, J.G.M.S.; Salgueiro, J.; Soares, A.M.V.d.M.; Azeiteiro, U.; Morgado, F. An integrated approach to assess the vulnerability to erosion in mangroves using GIS models in a tropical coastal protected area. Int. J. Clim. Change Strateg. Manag. 2019, 11, 289–307. [Google Scholar] [CrossRef]
- Cahyadi, R.; Ruslanjari, D.; Puspitasari, D.; Indasari, G.D.; Sandro, N. Coastal Vulnerability Assessment for Community Resilience on Abrasion: Case of Bugel Coast, Kulon Progo Regency, Indonesia. ASEAN J. Sci. Technol. Dev. 2022, 39, 3. [Google Scholar] [CrossRef]
- Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- GIOC. Atlas de inundación del litoral peninsular español. Documento complementario, 2001; 95. [Google Scholar]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-4/W3, 47–50. [Google Scholar] [CrossRef]
- Pagán, J.I.; Aragonés, L.; Tenza-Abril, A.J.; Pallarés, P. The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain. Sci. Total Environ. 2016, 559, 242–255. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; 2008-1278; US Geological Survey: Reston, VA, USA, 2009.
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Manca, E.; Cáceres, I.; Alsina, J.M.; Stratigaki, V.; Townend, I.; Amos, C.L. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass. Cont. Shelf Res. 2012, 50–51, 100–116. [Google Scholar] [CrossRef]
- Sevim, O.; Otay, E.N. Effects of Fallen Posidonia Oceanica Seagrass Leaves on Wave Energy at Sandy Beaches. Water 2024, 16, 2261. [Google Scholar] [CrossRef]
- Sierra, J.P.; Gracia, V.; Castell, X.; García-León, M.; Mösso, C.; Lin-Ye, J. Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment. J. Mar. Sci. Eng. 2023, 11, 1186. [Google Scholar] [CrossRef]
- Sánchez-Moyano, J.E.; García-Adiego, E.M.; Estacio, F.J.; García-Gómez, J.C. Influence of the density of Caulerpa prolifera (Chlorophyta) on the composition of the macrofauna in a meadow in Algeciras Bay (Southern Spain). Cienc. Mar. 2001, 27, 47–771. [Google Scholar] [CrossRef]
- Ecolevante. Estudio Ecocartográfico del Litoral de las Provincias de Alicante y Valencia; Dirección General de Costas, Ministerio de Medio Ambiente: Madrid, Spain, 2006. Available online: http://www.mapama.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-alicante.aspx (accessed on 10 June 2024).
- EcoCastellón. Estudio Ecocartográfico del Litoral de la Provincia de Castellón; Dirección General de Costas, Ministerio de Medio Ambiente: Madrid, Spain, 2009. Available online: https://www.miteco.gob.es/es/costas/temas/proteccion-costa/ecocartografias/ecocartografia-castellon.html (accessed on 10 June 2024).
- Martínez, M.L.; Psuty, N.P.; Lubke, R.A. A perspective on coastal dunes. In Coastal Dunes: Ecology and Conservation; Springer: Berlin/Heidelberg, Germany, 2004; pp. 3–10. [Google Scholar]
- Ahmed, M.A.; Sridharan, B.; Saha, N.; Sannasiraj, S.A.; Kuiry, S.N. Assessment of coastal vulnerability for extreme events. Int. J. Disaster Risk Reduct. 2022, 82, 103341. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G.R. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations. Coast. Eng. 2013, 80, 16–34. [Google Scholar] [CrossRef]
- Gibb, J.G.; Sheffield, A.T.; Foster, G.A. A Standardised Coastal Sensitivity Index Based on an Initial Framework for Physical Coastal Hazards Information; Department of Conservation: Wellington, New Zealand, 1992; p. 101. [Google Scholar]
- Alcántara-Carrió, J.; García Echavarría, L.M.; Jaramillo-Vélez, A. Is the coastal vulnerability index a suitable index? Review and proposal of alternative indices for coastal vulnerability to sea level rise. Geo-Mar. Lett. 2024, 44, 8. [Google Scholar] [CrossRef]
- Coelho, C.; Silva, R.; Veloso-Gomes, F.; Taveira Pinto, F. A vulnerability analysis approach for the Portuguese west coast. Risk Anal. V Simul. Hazard Mitig. 2006, 1, 251–262. [Google Scholar]
- Gornitz, V.M.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. J. Coast. Res. 1994, SI12, 327–338. [Google Scholar]
- Bagdanavičiūtė, I.; Kelpšaitė, L.; Soomere, T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast. Manag. 2015, 104, 124–135. [Google Scholar] [CrossRef]
- López, M.; Baeza-Brotons, F.; López, I.; Tenza-Abril, A.J.; Aragonés, L. Mineralogy and morphology of sand: Key parameters in the durability for its use in artificial beach nourishment. Sci. Total Environ. 2018, 639, 186–194. [Google Scholar] [CrossRef]
- Ružić, I.; Dugonjić Jovančević, S.; Benac, Č.; Krvavica, N. Assessment of the Coastal Vulnerability Index in an Area of Complex Geological Conditions on the Krk Island, Northeast Adriatic Sea. Geosciences 2019, 9, 219. [Google Scholar] [CrossRef]
Variable | Very Low (1) | Low (2) | Moderate (3) | High (4) | Very High (5) | |
---|---|---|---|---|---|---|
Geomorphology | A—Beach width (m) | >100 | 100–60 | 60–30 | 30–15 | <15 |
B—Beach erosion/accretion rate (m/yr) | >[+1.5] | [+1.5]–[+0.5] | [+0.5]–[−0.5] | [−0.5]–[−1.5] | <[−1.5] | |
C—Dune width (m) | >75 | 75–100 | 50–25 | 25–10 | <10 | |
Hydrodynamics | D—Wave heigh (m)t | <0.5 | 0.5–1.0 | 1.0–1.5 | 1.5–2 | >2 |
E—Relative coastal flood level (m) | <[−1.5] | [−1.5]–[−0.5] | [−0.5]–[0.0] | [0.0]–[+0.5] | >[+0.5] | |
Vegetation | F—Submerged vegetation meadows | P. oceanica | P. oceanica in regression | Cymodocea nodosa | C. prolifera, Racemosa or Mixed | Absence |
G—Upper depth limit of submerged vegetation (m) | <4.0 | 4.0–6.0 | 6.0–9.0 | 9.0–12 | >12 | |
H—Percentage of vegetated dune | 100–80 | 80–60 | 60–40 | 40–20 | <20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, P.; López, I.; Pagán, J.I. Assessment of Beach Erosion Vulnerability in the Province of Valencia, Spain. J. Mar. Sci. Eng. 2024, 12, 2111. https://doi.org/10.3390/jmse12122111
Ortiz P, López I, Pagán JI. Assessment of Beach Erosion Vulnerability in the Province of Valencia, Spain. Journal of Marine Science and Engineering. 2024; 12(12):2111. https://doi.org/10.3390/jmse12122111
Chicago/Turabian StyleOrtiz, Pablo, Isabel López, and José Ignacio Pagán. 2024. "Assessment of Beach Erosion Vulnerability in the Province of Valencia, Spain" Journal of Marine Science and Engineering 12, no. 12: 2111. https://doi.org/10.3390/jmse12122111
APA StyleOrtiz, P., López, I., & Pagán, J. I. (2024). Assessment of Beach Erosion Vulnerability in the Province of Valencia, Spain. Journal of Marine Science and Engineering, 12(12), 2111. https://doi.org/10.3390/jmse12122111