Ordovician Tsunamis: Summary of Hypotheses and Implications for Geoheritage Resources
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Summary of the Evidence Collected from the Literature
3.2. Interpretation of the Collected Lines of Evidence
4. Discussion
4.1. Representativeness of the Literature-Based Evidence
4.2. Geoheritage Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- International Commission on Stratigraphy. Available online: Stratigraphy.org (accessed on 24 August 2023).
- Sadler, P.M.; Cooper, R.A.; Melchin, M. High-resolution, early Paleozoic (Ordovician-Silurian) time scales. Bull. Geol. Soc. Am. 2009, 121, 887–906. [Google Scholar] [CrossRef]
- Droser, M.L.; Finnegan, S. The Ordovician radiation: A follow-up to the Cambrian explosion? Integr. Comp. Biol. 2003, 43, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Ruban, D.A. Palaeoenvironmental setting (glaciations, sea level, and plate tectonics) of Palaeozoic major radiations in the marine realm. Ann. De Paleontol. 2010, 96, 143–158. [Google Scholar] [CrossRef]
- Servais, T.; Cascales-Minana, B.; Harper, D.A.T.; Lefebvre, D.; Munnecke, A.; Wang, W.; Zhang, Y. No (Cambrian) explosion and no (Ordovician) event: A single long-term radiation in the early Paleozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 623, 11592. [Google Scholar] [CrossRef]
- Rasmussen, C.M.Ø.; Vandenbroucke, T.R.A.; Nogues-Bravo, D.; Finnegan, S. Was the Late Ordovician mass extinction truly exceptional? Trends Ecol. Evol. 2023, 38, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, P.M. The late Ordovician mass-extinction. Annu. Rev. Earth Planet. Sci. 2001, 29, 331–364. [Google Scholar] [CrossRef]
- Wang, G.; Zhan, R.; Percival, I.G. The end-Ordovician mass extinction: A single-pulse event? Earth-Sci. Rev. 2019, 192, 15–33. [Google Scholar] [CrossRef]
- Hallam, A. Pre-Quaternary sea-level changes (Phanerozoic eustasy). Annu. Rev. Earth Planet. Sci. 1984, 12, 205–244. [Google Scholar] [CrossRef]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef]
- Marcilly, C.M.; Torsvik, T.H.; Conrad, C.P. Global Phanerozoic sea levels from paleogeographic flooding maps. Gondwana Res. 2022, 110, 128–142. [Google Scholar] [CrossRef]
- Scotese, C.R. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Cocks, L.R.M. Gondwana from top to base in space and time. Gondwana Res. 2013, 24, 999–1030. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Stampfli, G.M. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 2008, 461, 9–20. [Google Scholar] [CrossRef]
- Fortey, R.A.; Cocks, L.R.M. Late Ordovician global warming-The Boda event. Geology 2005, 33, 405–408. [Google Scholar] [CrossRef]
- Ghienne, J.-F.; Desrochers, A.; Vandenbroucke, T.R.A.; Achab, A.; Asselin, E.; Dabard, M.-P.; Farley, C.; Loi, A.; Paris, F.; Wickson, S.; et al. A Cenozoic-style scenario for the end-Ordovician glaciation. Nat. Commun. 2014, 5, 4485. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E.L.; Joachimski, M.M. Ocean temperatures through the Phanerozoic reassessed. Sci. Rep. 2022, 12, 8938. [Google Scholar] [CrossRef] [PubMed]
- Munnecke, A.; Calner, M.; Harper, D.A.T.; Servais, T. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 296, 389–413. [Google Scholar] [CrossRef]
- Scotese, C.R.; Song, H.; Mills, B.J.W.; van der Meer, D.G. Phanerozoic paleotemperatures: The Earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Glikson, A.Y. An asteroid impact origin of the Hirnantian (end-Ordovician) glaciation and mass extinction. Gondwana Res. 2023, 118, 153–159. [Google Scholar] [CrossRef]
- Schmitz, B.; Harper, D.A.T.; Peucker-Ehrenbrink, B.; Stouge, S.; Alwmark, C.; Cronholm, A.; Bergstrom, S.M.; Tassinari, M.; Xiaofeng, W. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nat. Geosci. 2008, 1, 49–53. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Global Occurrence of Large Tsunamis and Tsunami-Like Waves within the Last 120 Years (1900–2019). Pure Appl. Geophys. 2020, 177, 1261–1266. [Google Scholar] [CrossRef]
- Bourgeois, J. Geologic effects and records of tsunamis. In The Sea; Robinson, A.R., Bernard, E.N., Eds.; Harvard University Press: Cambridge, MA, USA, 2009; Volume 15, pp. 53–91. [Google Scholar]
- Dawson, A.G.; Stewart, I. Tsunami deposits in the geological record. Sediment. Geol. 2007, 200, 166–183. [Google Scholar] [CrossRef]
- Luczyński, P. The tsunamites problem. Why are fossil tsunamites so rare? Prz. Geol. 2012, 60, 598–604. [Google Scholar]
- Ruban, D.A. Tsunamis Struck Coasts of Triassic Oceans and Seas: Brief Summary of the Literary Evidence. Water 2023, 15, 1590. [Google Scholar] [CrossRef]
- Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 2012, 63, 5–30. [Google Scholar] [CrossRef]
- Pratt, B.R. Storms versus tsunamis: Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana. Geology 2002, 30, 423–426. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Prosser, C.; Murphy, M.; Larwood, J. Geological Conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006. [Google Scholar]
- Henriques, M.H. Broadening Frontiers in Geoconservation: The Concept of Intangible Geoheritage Represented by the 1755 Lisbon Earthquake. Geoheritage 2023, 15, 57. [Google Scholar] [CrossRef]
- Roig-Munar, F.X.; Martín-Prieto, J.Á.; Rodríguez-Perea, A.; Gelabert, B.; Vilaplana, J.M. Proposed geosites for tsunamitic blocks in the rocky coasts of Formentera (Balearic Islands). Rev. De La Soc. Geol. De Esp. 2018, 31, 35–48. [Google Scholar]
- Rusyana, A.; Nurhasanah; Astuti, S. Forecasting the number of visitors of Aceh state museum using decomposition method. J. Phys. Conf. Ser. 2018, 1116, 022041. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Takahashi, R.; Kaibe, K.; Suzuki, K.; Takahashi, S.; Takeda, K.; Hansen, M.; Yumoto, M. New concept of the affinity between research fields using academic journal data in Scopus. Scientometrics 2023, 128, 3507–3534. [Google Scholar] [CrossRef]
- Aucoin, C.D.; Brett, C.E. Refined stratigraphy of the Late Ordovician (Katian; Richmondian) Waynesville Formation across the northeastern and northwestern margin of the Cincinnati Arch. Stratigraphy 2015, 12, 307–317. [Google Scholar]
- Pope, M.C.; Read, J.F.; Bambach, R.; Hofmann, H.J. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: Sedimentary recorders of earthquakes in the Appalachian basin. GSA Bull. 1997, 109, 489–503. [Google Scholar] [CrossRef]
- Dattilo, B.J.; Freeman, R.L.; Zubovic, Y.M.; Brett, C.E.; Straw, A.M.; Frauhiger, M.J.; Hartstein, A.R.; Shoemaker, L.M. Time-richness and phosphatic microsteinkern accumulation in the Cincinnatian (Katian) Ordovician, USA: An example of polycyclic phosphogenic condensation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 535, 109362. [Google Scholar] [CrossRef]
- Emig, C.C.; Gutiérrez-Marco, J.C. Lingulid beds at the upper limit of the Armorican Quartzite (Ordovician, Arenig, SW Europe). Geobios 1997, 30, 481–495. [Google Scholar] [CrossRef]
- Kokelaar, P.; Königer, S. Marine emplacement of welded ignimbrite: The Ordovician Pitts Head Tuff, North Wales. J. Geol. Soc. 2000, 157, 517–536. [Google Scholar] [CrossRef]
- Lam, A.R.; Stigall, A.R.; Matzke, N.J. Dispersal in the Ordovician: Speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 489, 147–165. [Google Scholar] [CrossRef]
- Monson, C.C.; Sweet, D.; Segvic, B.; Zanoni, G.; Balling, K.; Wittmer, J.M.; Ganis, G.R.; Cheng, G. The Late Ordovician (Sandbian) Glasford structure: A marine-target impact crater with a possible connection to the Ordovician meteorite event. Meteorit. Planet. Sci. 2019, 54, 2927–2950. [Google Scholar] [CrossRef]
- Põldsaar, K.; Ainsaar, L. Extensive soft-sediment deformation structures in the early Darriwilian (Middle Ordovician) shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp, northwestern Estonia. Mar. Geol. 2014, 256, 111–127. [Google Scholar] [CrossRef]
- Suuroja, K.; Kirsimae, K.; Ainsaar, L.; Kohv, M.; Mahaney, V.C.; Suuroja, S. The Osmusaar Breccia in Northwestern Estonia–evidence of a 475 Ma earthquake of an impact? In Impact Markers in the Stratigraphic Record; Koeberl, C., Martinez-Ruiz, F.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 333–347. [Google Scholar]
- Põldsaar, K.; Ainsaar, L.; Nemliher, R.; Tinn, O.; Stinkulis, G. A siliciclastic shallow-marine turbidite on the carbonate shelf of the Ordovician Baltoscandian palaeobasin. Est. J. Earth Sci. 2019, 68, 1–14. [Google Scholar]
- Suuroja, K.; Suuroja, S.; All, T.; Floden, T. Kärdla (Hiiumaa Island, Estonia)—The buried and well-preserved Ordovician marine impact structure. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1121–1144. [Google Scholar] [CrossRef]
- Pratt, B.R.; Raviolo, M.M.; Bordonaro, O.L. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera, San Juan, Argentina. Sedimentology 2012, 59, 843–866. [Google Scholar] [CrossRef]
- Meinhold, G.; Arslan, A.; Lehnert, O.; Stampfli, G. Global mass wasting during the Middle Ordovician: Meteoritic trigger or plate-tectonic environment? Gondwana Res. 2011, 19, 535–541. [Google Scholar] [CrossRef]
- Parnell, J. Global mass wasting at continental margins during Ordovician high meteorite influx. Nat. Geosci. 2009, 2, 57–61. [Google Scholar] [CrossRef]
- Delabroye, A.; Vecoli, M. The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy. Earth-Sci. Rev. 2010, 98, 269–282. [Google Scholar] [CrossRef]
- Finlay, A.J.; Selby, D.; Gröcke, D.R. Tracking the Hirnantian glaciation using Os isotopes. Earth Planet. Sci. Lett. 2010, 293, 339–348. [Google Scholar] [CrossRef]
- Villas, E.; Vennin, E.; Álvaro, J.J.; Hammann, V.; Herrera, Z.A.; Piovano, E.L. The late Ordovician carbonate sedimentation as a major triggering factor of the Hirnantian glaciation. Bull. Soc. Geol. Fr. 2002, 173, 569–578. [Google Scholar] [CrossRef]
- Yin, L.-M.; Borjigin, T.; Ou, Z.-J.; Bian, L.-Z. Late Ordovician microphytoplankton in Southwest China: Recording paleogeographic variations across the Hirnantian glaciation. Palaeoworld 2023, 32, 79–92. [Google Scholar] [CrossRef]
- Zhou, L.; Algeo, T.J.; Shen, J.; Hu, Z.F.; Gong, H.; Xie, S.; Huang, J.H.; Gao, S. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 420, 223–234. [Google Scholar] [CrossRef]
- Ke, H.; Ai, S.; Yan, B.; Zhou, C.; Wang, Z.; Yang, Y.; Liu, T.; An, J.; Chen, Y. Iceberg-Induced Tsunamis near Dålk Glacier, Antarctica. J. Surv. Eng. 2022, 148, 04021027. [Google Scholar] [CrossRef]
- Lee, H.J. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar. Geol. 2009, 264, 53–64. [Google Scholar] [CrossRef]
- Lüthi, M.P.; Vieli, A. Multi-method observation and analysis of a tsunami caused by glacier calving. Cryosphere 2016, 10, 995–1002. [Google Scholar] [CrossRef]
- Pattiaratchi, C.; Wijeratne, E.M.S. Observations of meteorological tsunamis along the south-west Australian coast. Nat. Hazards 2014, 74, 281–303. [Google Scholar] [CrossRef]
- Rabinovich, A.B.; Vilibić, I.; Tinti, S. Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Phys. Chem. Earth 2009, 34, 891–893. [Google Scholar] [CrossRef]
- Saito, T.; Kubota, T.; Chikasada, N.Y.; Tanaka, Y.; Sandanbata, O. Meteorological Tsunami Generation Due to Sea-Surface Pressure Change: Three-Dimensional Theory and Synthetics of Ocean-Bottom Pressure Change. J. Geophys. Res. Ocean. 2021, 126, 1–29. [Google Scholar] [CrossRef]
- Alonso, G.; Dragani, W.; Péreza, I. The role of meteorological tsunamis on beach erosion in the buenos aires coast: Some numerical experiments. Coast. Eng. J. 2018, 60, 299–307. [Google Scholar] [CrossRef]
- Bétard, F.; Hobléa, F.; Portal, C. Geoheritage as new territorial resource for local development. Ann. Geogr. 2017, 717, 523–543. [Google Scholar] [CrossRef]
- Sallam, E.S.; Ruban, D.A.; Ermolaev, V.A. Geoheritage resources and new direction of infrastructural growth in Egypt: From geosite assessment to policy development. Resour. Policy 2022, 79, 103127. [Google Scholar] [CrossRef]
- Santangelo, N.; Valente, E. Geoheritage and Geotourism resources. Resources 2020, 9, 80. [Google Scholar] [CrossRef]
- Németh, K. Geoheritage and geodiversity aspects of catastrophic volcanic eruptions: Lessons from the 15th of January 2022 Hunga Tonga-Hunga Ha’apai eruption, SW Pacific. Int. J. Geoheritage Parks 2022, 10, 546–568. [Google Scholar] [CrossRef]
- Sansò, P.; Margiotta, S.; Mastronuzzi, G.; Vitale, A. The geological heritage of Salento Leccese area (Apulia, southern Italy). Geoheritage 2015, 7, 85–101. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Çetiner, Z.S.; Ertekin, C.; Yiğitbaş, E. Evaluating Scientific Value of Geodiversity for Natural Protected Sites: The Biga Peninsula, Northwestern Turkey. Geoheritage 2018, 10, 49–65. [Google Scholar] [CrossRef]
- Corbí, H.; Fierro, I.; Aberasturi, A.; Sánchez Ferris, E.J. Potential Use of a Significant Scientific Geosite: The Messinian Coral Reef of Santa Pola (SE Spain). Geoheritage 2018, 10, 427–441. [Google Scholar] [CrossRef]
- Dincă, I.; Keshavarz, S.R.; Almodaresi, S.A. Landscapes of the Yazd-Ardakan Plain (Iran) and the Assessment of Geotourism—Contribution to the Promotion and Practice of Geotourism and Ecotourism. Land 2023, 12, 858. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Motta Garcia, M.D.G.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Nazaruddin, D.A. Systematic Studies of Geoheritage in Jeli District, Kelantan, Malaysia. Geoheritage 2017, 9, 19–33. [Google Scholar] [CrossRef]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated Approach for the Inventory and Management of Geomorphological Heritage at the Regional Scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Suzuki, D.A.; Takagi, H. Evaluation of Geosite for Sustainable Planning and Management in Geotourism. Geoheritage 2018, 10, 123–135. [Google Scholar] [CrossRef]
- Tamang, L.; Mandal, U.K.; Karmakar, M.; Banerjee, M.; Ghosh, D. Geomorphosite evaluation for geotourism development using geosite assessment model (GAM): A study from a Proterozoic terrain in eastern India. Int. J. Geoheritage Parks 2023, 11, 82–99. [Google Scholar] [CrossRef]
- Coronato, A.; Schwarz, S. Approaching geodiversity and geoconservation in Argentina. Int. J. Geoheritage Parks 2022, 10, 597–615. [Google Scholar] [CrossRef]
- Lech, R.R.; Marcus, A.; Reinoso, J.R. Science and tourism together in the management for the preservation of the geological heritage. Ser. Correl. Geol. 2018, 34, 35–41. [Google Scholar]
- Medina, W.M. Geo-environmental Evolutionary Interpretation of Geosites Analysed in La Quebrada de Humahuaca, Northwestern Argentina. Geoheritage 2023, 15, 51. [Google Scholar] [CrossRef]
- Medina, W.; Vejsbjerg, L.; Aceñolaza, G. Legal framework for geoconservation. Presence of geology in protected areas of the Argentine Republic. Rev. Del Mus. Argent. De Cienc. Nat. Nueva Ser. 2016, 18, 53–64. [Google Scholar] [CrossRef]
- Miranda, F.; Lema, H. Current situation of geologiacal heritage in Argentina. Bol. Parana. Geosci. 2013, 70, 87–102. [Google Scholar]
- Brown, E.J.; Evans, D.H.; Larwood, J.G.; Prosser, C.D.; Townley, H.C. Geoconservation and geoscience in England: A mutually beneficial relationship. Proc. Geol. Assoc. 2018, 129, 492–504. [Google Scholar] [CrossRef]
- Burek, C. The Role of LGAPs (Local Geodiversity Action Plans) and Welsh RIGS as Local Drivers for Geoconservation within Geotourism in Wales. Geoheritage 2012, 4, 45–63. [Google Scholar] [CrossRef]
- Hose, T.A.; Vasiljević, D.A. Defining the Nature and Purpose of Modern Geotourism with Particular Reference to the United Kingdom and South-East Europe. Geoheritage 2012, 4, 25–43. [Google Scholar] [CrossRef]
- Price, W.R.; Ronck, C.L. Quarrying for World Heritage Designation: Slate Tourism in North Wales. Geoheritage 2019, 11, 1839–1854. [Google Scholar] [CrossRef]
- Prosser, C.D. The history of geoconservation in England: Legislative and policy milestones. Geol. Soc. Spec. Publ. 2008, 300, 113–122. [Google Scholar] [CrossRef]
ID * | Location | Age | Character of Evidence | Source(s) |
---|---|---|---|---|
(How Indicated in the Original Sources) | ||||
1 | Cincinnati Arch/Basin | Katian, Mohawkian–Cincinnatian | Alternative hypothesis, proposed briefly; seismicity-triggered tsunami | [24,38,39,40,41] |
2 | Armorican Massif | Arenig–Llanvirn | Preferred hypothesis, argued briefly; volcanism-triggered tsunami | [42] |
3 | Hesperian Massif | |||
4 | North Wales | Caradoc | Well-developed hypothesis, moderate argumentation; combined volcanism and landslide-triggered tsunami | [43] |
5 | Illinois Basin | Sandbian | Alternative hypothesis, proposed briefly; impact-triggered tsunami | [44] |
6 (11) | Baltoscandian Basin | Darriwilian | Debatable hypothesis, rather extensive evidence; seismicity-triggered tsunami | [45,46] |
7 | Baltoscandian Basin | Dapingian | Well-developed hypothesis; extensive argumentation; seismicity- or impact-triggered tsunami | [47] |
8 | Baltoscandian Basin | 455 Ma | Simply stated hypothesis, argued briefly; impact-triggered tsunami | [48] |
9 | Montana | Earliest Ordovician ** | Preferred hypothesis, argued extensively; seismicity-triggered tsunami | [29] |
10 | Western Precordillera | Early Ordovician | Preferred hypothesis, argued extensively; seismicity-triggered tsunami | [49] |
11 (6) | Estonia | Darriwilian | Well developed but critically reconsidered, moderate argumentation; complex mechanism that remains debatable | [50,51] |
12 | South Wales | |||
13 | North England | |||
14 | Yukon | |||
15 | Western Newfoundland | |||
16 | Western Ireland | |||
17 | Central Newfoundland | |||
18 | Western Norway | |||
19 | Korea | |||
20 | Western Precordillera | |||
21 | Central Precordillera | |||
22 | New South Wales | |||
23 | Northwestern Argentina | |||
24 | Western Yunnan |
ID * | Domain ** | Epoch | Degree of Certainty *** | Trigger |
---|---|---|---|---|
1 | Laurentia | Late Ordovician | 2 | Seismicity |
2 | Gondwana | Middle Ordovician | 3 | Volcanism |
3 | Gondwana | |||
4 | terranes 1 | Late Ordovician | 4 | Complex |
5 | Laurentia | Late Ordovician | 2 | Impact |
6 (11) | Baltica | Middle Ordovician | 1 | Seismicity |
7 | Baltica | Middle Ordovician | 5 | Questionable |
8 | Baltica | Late Ordovician | 3 | Impact |
9 | Laurentia | Early Ordovician | 4 | Seismicity |
10 | terranes 2 | Early Ordovician | 4 | Seismicity |
11 (6) | Baltica | Middle Ordovician | 3 | Questionable |
12 | terranes 1 | |||
13 | terranes 1 | |||
14 | Laurentia | |||
15 | Laurentia | |||
16 | terranes 1 | |||
17 | terranes 1 | |||
18 | Baltica | |||
19 | North China | |||
20 | terranes 2 | |||
21 | terranes 2 | |||
22 | Gondwana | |||
23 | terranes 2 | |||
24 | South China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A.; Yashalova, N.N. Ordovician Tsunamis: Summary of Hypotheses and Implications for Geoheritage Resources. J. Mar. Sci. Eng. 2023, 11, 1764. https://doi.org/10.3390/jmse11091764
Ruban DA, Yashalova NN. Ordovician Tsunamis: Summary of Hypotheses and Implications for Geoheritage Resources. Journal of Marine Science and Engineering. 2023; 11(9):1764. https://doi.org/10.3390/jmse11091764
Chicago/Turabian StyleRuban, Dmitry A., and Natalia N. Yashalova. 2023. "Ordovician Tsunamis: Summary of Hypotheses and Implications for Geoheritage Resources" Journal of Marine Science and Engineering 11, no. 9: 1764. https://doi.org/10.3390/jmse11091764