A Review of Application of Machine Learning in Storm Surge Problems
Abstract
:1. Introduction
2. The Formulation of Prediction Problems
2.1. Water Level Forecasting
2.1.1. Peak-Value Forecasting
- Predict peak water levels in a single station.
- Predict peak water levels in several stations.
2.1.2. Time-Series Forecasting
- Direct strategy
- Recursive strategy
- Joint strategy
2.1.3. Spatio-Temporal Forecasting
- Predict peak water levels.
- Predict the temporal evolution of water levels.
2.2. Inundation Forecasting
2.2.1. Peak-Value Forecasting
2.2.2. Time-Series Forecasting
2.2.3. Spatio-Temporal Forecasting
2.3. Importance of Formulating Problems
3. Data Collection and Feature Selection
3.1. Observational Data
3.1.1. Typhoon Characteristics
3.1.2. Local Hydrodynamic Parameters
3.1.3. Local/Regional Meteorological Conditions
3.2. Synthetic Data
Study | Area | Number of Synthetic Typhoons | Numerical Models | Methods Used to Generate Storms | Inclusion of Astronomical Tide |
---|---|---|---|---|---|
Jia and Taflanidis [37] | the Hawaiian Islands of Oahu and Kauai | 643 | ADCIRC+SWAN | Based on guidance from the Central Pacific Hurricane Center | √ |
Kim et al. [67]; Jia et al. [86] | Gulf of Mexico | 446 | ADCIRC+ STWAVE | Defined from a joint probability model | × |
Al Kajbaf and Bensi [19]; Hashemi et al. [20]; Lee et al. [52]; Adeli et al. [54]; Kyprioti et al. [55]; Wei et al. [87]; | North Atlantic, Rhode Island | 1050 (Some studies only used part of synthetic typhoons) | A suite of numerical models including: WAM, STWAVE, ADCIRC | JPM-OS (Joint probability method with optimized sampling methodology) | × |
Bezuglov et al. [88] | North Carolina | 324 | ADCIRC+WW3+SWAN | JPM | × |
Sahoo and Bhaskaran [42] | the entire Odisha State, India | 44 | ADCIRC | Cyclone tracks obtained from the archives of JTWC | √ |
Igarashi and Tajima [64] | Tokyo Bay | 151 | Storm surge models based on nonlinear shallow-water equations and energy balance equations | Historical typhoons from 1951 to 2017 | × |
Ayyad et al. [89] | the Western North Atlantic Ocean | 10,300 | ADCIRC+SWAN | Statistical/deterministic TC model based on observations or climate models | Not mentioned |
Ayyad et al. [90] | the Western North Atlantic Ocean basin (idealized topography) | 36,892 | ADCIRC | Statistical/deterministic TC model based on observations | Not mentioned |
Lockwood et al. [91] | The entire North Atlantic Ocean | 5018 | ADCIRC | Based on the NCEP reanalysis between 1980 and 2005 | × |
Xie et al. [48] | the Pearl River and adjacent East China Sea | 116 | FVCOM | Historical typhoons from 1958–2018 | √ |
Pachev et al. [57] | Texas and Alaska | Texas: 446, Alaska: 109 | ADCIRC | JPM-OS | √For Alaska ×For Texas |
3.3. Feature Engineering, Feature Selection and Feature Importance
3.3.1. Feature Engineering
- Scaling, such as scaling distance between reference and targeted locations measured by maximum wind radius, is one simple way to add features [19].
- Lagged features are frequently used to capture temporal dependencies and patterns, which represent values at preceding timesteps, providing information about the future state. It has been confirmed that the appropriate historical horizons (a.k.a. sliding window widths and lags) have a direct impact on the model performance [38,45,53,62,64].
- Temporal/Spatial window statistics, like mean, max, and min over a fixed window, are considered for specific tasks. For example, to remove the temporal component of the input data, Pachev et al. [57] computed the rolling window statistics of the atmospheric features for predicting peak surges. To account for the spatial dependency of forcing variables or bathymetry, spatial features were added by computing statistics for each targeted point over a sequence of neighborhoods [53,57,92].
- Time-series decomposition technique. Wang et al. [47] showed that the fluctuation features of the storm surge extracted by the time-varying filtered empirical modal and the use of Fourier transform can significantly improve forecasting performance.
3.3.2. Feature Selection
3.3.3. Feature Importance
4. The Selection of Proper ML Methods
4.1. Conventional Machine Learning Models
4.1.1. Gaussian Process Regression
4.1.2. Support Vector Regression
4.1.3. Genetic Algorithms and Genetic Programming
4.1.4. Artificial Neural Networks
4.1.5. Nonlinear Autoregressive Exogenous Model
4.1.6. Other Models
4.2. Deep Learning Models
4.2.1. LSTM
4.2.2. CNN
4.2.3. CNN-LSTM, LSTM-CNN, and ConvLSTM
4.3. Model Selection, Development and Evaluation
- Choose a well-established, commonly-used model or a familiar model used in previous tasks (e.g., ANNs, CNNs, and LSTMs) to get started.
- In terms of types of problem forvmulation, if probabilistic outcomes are required, Gaussian Process Regression and Polynomial Chaos are preferred, and other schemes that are unused before could be experimented with (e.g., Bayesian framework [27]). If classification problems are to be handled, some simple and frequently used algorithms, such as KNN, SVM, and DT, can be tried at first. Storm surge forecasting is often referred to as a regression task, and a bunch of regression models can be employed.
- In terms of available data, conventional ML models are more qualified in small-size datasets, while if a large synthetic dataset is accessible, the performance of DL models will be greatly enhanced.
- In terms of the tradeoff between accuracy and interpretability, using which algorithm depends on the objective of the problem. In general, as the complexity of a method increases, its interpretability decreases. If the goal is higher accuracy, it’s better to prioritize models with more complex internal structures (e.g., DNNs and encoder-decoder models) without pursuing excessive interpretation. If a functional form is needed and features are only a few, a white-box model like GP can be used.
5. Application of Hybrid Methods in Storm Surge Prediction
5.1. ML-Based Post-Processing
5.2. ML-Aided Optimization of Numerical Model Parameterization
5.3. ML-Based Data Assimilation
6. Discussion
6.1. Underprediction of Peak Values and Extreme Events
6.2. The Nonlinear Interaction Problems
6.3. The Black-Box Problems
6.4. When Does ML Perform Better than Traditional Methods?
7. Summary and Future Outlooks
7.1. Physics-Informed ML
7.1.1. PIML in Storm Surge Modelling
7.1.2. PIML-Aided Numerical Forecasting
7.2. Towards a Transparent and Robust AI-Aided Storm Surge Warning System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AdaBoost | Adaptive Boost |
ADCIRC | ADvanced CIRCulation model |
AI | Artificial Intelligence |
ALE | Accumulated Local Effects |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
ANN | Artificial Neural Network |
BPNN | Back-Propagation Neural Network |
CC | Correlation Coefficient |
ChatGPT | Chat Generative Pre-Trained Transformer |
CMA | China Meteorological Administration |
CNN | Convolutional Neural Network |
ConvLSTM | Convolutional LSTM |
CRPS | Continuous Ranked Probability Score |
DL | Deep Learning |
DNN | Deep Neural Network |
DT | Decision Trees |
EnKf | Ensemble Kalman Filter |
ENSO | El Niño/La Niña Southern Oscillation |
FNO | Fourier Neural Operator |
FourCastNet | Fourier Forecasting Neural Network |
FVCOM | Finite-Volume Coastal Ocean Model |
GA | Genetic Algorithm |
GAN | Generative adversarial network |
GFD | Geophysical Fluid Dynamics |
GFS | Global Forecast System |
GP | Genetic Programming |
GPR | Gaussian Process Regression |
IAI | Interpretable AI |
JTWC | Joint Typhoon Warning Center |
JPM-OS | Joint probability method with optimized sampling methodology |
KGE | Kling-Gupta Efficiency |
KNMI | Royal Netherlands Meteorological Institute |
KNN | K-Nearest Neighbors |
LightGBM | Light Gradient Boosting Machine |
LSTM | Long Short-term Memory |
MAE | Mean Absolute Error |
MIMO | Multi-Input Multi-Output |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MSE | Mean Squared Error |
NARX | Nonlinear AutoregRessive with eXogenous inputs |
NCEP | National Centers for Environmental Prediction |
NEMO | Nucleus for European Modelling of the Ocean model |
NNs | Neural Networks |
NS | Navier–Stokes |
NWP | Numerical Weather Prediction |
PCA | Principal Component Analysis |
PDEs | Partial Differential Equations |
PDP | Partial Dependence Plots |
PFI | Permuted Feature Importance |
PIML | Physics-Informed ML |
PINNs | Physics-Informed Neural Networks |
R2 | Coefficient of Determination |
ReLU | Rectified Linear Units |
ResNet | Residual Neural Network |
RF | Random Forest |
RMSE | Root Mean Squared Error |
RNN | Recurrent Neural Network |
ROMS | Regional Ocean Modeling System |
RSMC | Tokyo Regional Specialized Meteorological Center Tokyo |
SFS | Sequential Forward Selection |
SLOSH | Sea, Lake and Overland Surges from Hurricane model |
STWAVE | STeady State spectral WAVE |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
SWAN | Simulating WAves Nearshore |
SWOT | Surface Water and Ocean Topography |
TC | Tropical Cyclone |
WAM | WAve Modeling |
WRF | Weather Research and Forecasting |
WW3 | WaveWatch III model |
XAI | eXplainable AI model |
XGBoost | eXtreme Gradient Boosting |
References
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A Review of Tropical Cyclone-Generated Storm Surges: Global Data Sources, Observations, and Impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Nott, J.; Green, C.; Townsend, I.; Callaghan, J. The World Record Storm Surge and the Most Intense Southern Hemisphere Tropical Cyclone: New Evidence and Modeling. Bull. Am. Meteorol. Soc. 2014, 95, 757–765. [Google Scholar] [CrossRef]
- Kohno, N.; Dube, S.K.; Entel, M.; Fakhruddin, S.H.M.; Greenslade, D.; Leroux, M.-D.; Rhome, J.; Thuy, N.B. Recent Progress in Storm Surge Forecasting. Trop. Cyclone Res. Rev. 2018, 7, 128–139. [Google Scholar] [CrossRef]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Horton, B.P.; DeConto, R.M.; Donnelly, J.P.; Pollard, D. Impact of Climate Change on New York City’s Coastal Flood Hazard: Increasing Flood Heights from the Preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA 2017, 114, 11861–11866. [Google Scholar] [CrossRef]
- Nott, J.; Hayne, M. High Frequency of ‘Super-Cyclones’ along the Great Barrier Reef over the Past 5,000 Years. Nature 2001, 413, 508–512. [Google Scholar] [CrossRef]
- Scharroo, R.; Smith, W.H.; Lillibridge, J.L. Satellite Altimetry and the Intensification of Hurricane Katrina. Eos 2005, 86, 366. [Google Scholar] [CrossRef]
- Feng, D.; Tan, Z.; He, Q. Physics-Informed Neural Networks of the Saint-Venant Equations for Downscaling a Large-Scale River Model. Water Resour. Res. 2023, 59, e2022WR033168. [Google Scholar] [CrossRef]
- Sonnewald, M.; Lguensat, R.; Jones, D.C.; Dueben, P.D.; Brajard, J.; Balaji, V. Bridging Observations, Theory and Numerical Simulation of the Ocean Using Machine Learning. Environ. Res. Lett. 2021, 16, 073008. [Google Scholar] [CrossRef]
- Kowalik, Z.; Murty, T.S. Numerical Modeling of Ocean Dynamics; World Scientific: Singapore, 1993; Volume 5. [Google Scholar]
- Chao, W.-T.; Young, C.-C.; Hsu, T.-W.; Liu, W.-C.; Liu, C.-Y. Long-Lead-Time Prediction of Storm Surge Using Artificial Neural Networks and Effective Typhoon Parameters: Revisit and Deeper Insight. Water 2020, 12, 2394. [Google Scholar] [CrossRef]
- Harris, D.L. Characteristics of the Hurricane Storm Surge; Technical Paper No. 48.; US. Department of Commerce, US. Government Printing Office: Washington, DC, USA, 1963.
- Horsburgh, K.J.; Wilson, C. Tide-Surge Interaction and Its Role in the Distribution of Surge Residuals in the North Sea. J. Geophys. Res. 2007, 112, C08003. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. Nonlinear Terms in Storm Surge Predictions: Effect of Tide and Shelf Geometry with Case Study from Hurricane Rita. J. Geophys. Res. 2010, 115, C06020. [Google Scholar] [CrossRef]
- Jelesnianski, C.P.; Chen, J.; Shaffer, W.A. SLOSH: Sea, Lake, and Overland Surges from Hurricanes; NOAA Techincal Report, NWS 48; National Weather Service: Silver Spring, MD, USA, 1992.
- Chen, C.; Beardsley, R.C.; Cowles, G. An Unstructured Grid, Finite-Volume Coastal Ocean Model (FVCOM) System. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef]
- Chu, D.; Niu, H.; Qiao, W.; Jiao, X.; Zhang, X.; Zhang, J. Modeling Study on the Asymmetry of Positive and Negative Storm Surges along the Southeastern Coast of China. J. Mar. Sci. Eng. 2021, 9, 458. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1, Theory and Methodology of ADCIRC-2DD1 and ADCIRC-3DL; Technical Report DRP-92-6; US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1992.
- Ramos-Valle, A.N.; Curchitser, E.N.; Bruyère, C.L.; McOwen, S. Implementation of an Artificial Neural Network for Storm Surge Forecasting. J. Geophys. Res. Atmos. 2021, 126, e2020JD033266. [Google Scholar] [CrossRef]
- Al Kajbaf, A.; Bensi, M. Application of Surrogate Models in Estimation of Storm Surge:A Comparative Assessment. Appl. Soft Comput. 2020, 91, 106184. [Google Scholar] [CrossRef]
- Hashemi, M.R.; Spaulding, M.L.; Shaw, A.; Farhadi, H.; Lewis, M. An Efficient Artificial Intelligence Model for Prediction of Tropical Storm Surge. Nat. Hazards 2016, 82, 471–491. [Google Scholar] [CrossRef]
- Li, J.; Nie, B. Storm Surge Prediction: Present Status and Future Challenges. Procedia IUTAM 2017, 25, 3–9. [Google Scholar] [CrossRef]
- Na, W.; McBride, J.L.; Zhang, X.-H.; Duan, Y.-H. Understanding Biases in Tropical Cyclone Intensity Forecast Error. Weather Forecast. 2018, 33, 129–138. [Google Scholar] [CrossRef]
- Yu, H.; Chen, G.; Zhou, C.; Wong, W.K.; Yang, M.; Xu, Y.; Chen, P.; Wan, R.; Hu, X. Are We Reaching the Limit of Tropical Cyclone Track Predictability in the Western North Pacific? Bull. Am. Meteorol. Soc. 2022, 103, E410–E428. [Google Scholar] [CrossRef]
- Bernier, N.B.; Thompson, K.R. Deterministic and Ensemble Storm Surge Prediction for Atlantic Canada with Lead Times of Hours to Ten Days. Ocean Model. 2015, 86, 114–127. [Google Scholar] [CrossRef]
- Dong, C.; Xu, G.; Han, G.; Bethel, B.J.; Xie, W.; Zhou, S. Recent Developments in Artificial Intelligence in Oceanography. Ocean-Land-Atmos. Res. 2022, 2022, 9870950. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-Learning-Based Information Mining from Ocean Remote-Sensing Imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Coco, G.; Plant, N.G. A Review of Machine Learning Applications to Coastal Sediment Transport and Morphodynamics. Earth-Sci. Rev. 2019, 194, 97–108. [Google Scholar] [CrossRef]
- Sagi, T.; Lehahn, Y.; Bar, K. Artificial Intelligence for Ocean Science Data Integration: Current State, Gaps, and Way Forward. Elem. Sci. Anthr. 2020, 8, 21. [Google Scholar] [CrossRef]
- Malde, K.; Handegard, N.O.; Eikvil, L.; Salberg, A.-B. Machine Intelligence and the Data-Driven Future of Marine Science. ICES J. Mar. Sci. 2020, 77, 1274–1285. [Google Scholar] [CrossRef]
- Lou, R.; Lv, Z.; Dang, S.; Su, T.; Li, X. Application of Machine Learning in Ocean Data. Multimed. Syst. 2021, 29, 1815–1824. [Google Scholar] [CrossRef]
- Kim, T.; Lee, W.-D. Review on Applications of Machine Learning in Coastal and Ocean Engineering. J. Ocean Eng. Technol. 2022, 36, 194–210. [Google Scholar] [CrossRef]
- Portillo Juan, N.; Negro Valdecantos, V. Review of the Application of Artificial Neural Networks in Ocean Engineering. Ocean Eng. 2022, 259, 111947. [Google Scholar] [CrossRef]
- Song, T.; Pang, C.; Hou, B.; Xu, G.; Xue, J.; Sun, H.; Meng, F. A Review of Artificial Intelligence in Marine Science. Front. Earth Sci. 2023, 11, 1090185. [Google Scholar] [CrossRef]
- Bajo, M.; Umgiesser, G. Storm Surge Forecast through a Combination of Dynamic and Neural Network Models. Ocean Model. 2010, 33, 1–9. [Google Scholar] [CrossRef]
- Jia, G.; Taflanidis, A.A. Kriging Metamodeling for Approximation of High-Dimensional Wave and Surge Responses in Real-Time Storm/Hurricane Risk Assessment. Comput. Methods Appl. Mech. Eng. 2013, 261–262, 24–38. [Google Scholar] [CrossRef]
- Žust, L.; Fettich, A.; Kristan, M.; Ličer, M. HIDRA 1.0: Deep-Learning-Based Ensemble Sea Level Forecasting in the Northern Adriatic. Geosci. Model Dev. 2021, 14, 2057–2074. [Google Scholar] [CrossRef]
- Pringle, W.J.; Burnett, Z.; Sargsyan, K.; Moghimi, S.; Myers, E. Efficient Probabilistic Prediction and Uncertainty Quantification of Tropical Cyclone–Driven Storm Tides and Inundation. Artif. Intell. Earth Syst. 2023, 2, e220040. [Google Scholar] [CrossRef]
- Defining Storm Surge, Storm Tide, and Inundation. Available online: https://ocean.weather.gov/defining_storm_surge.pdf (accessed on 3 August 2023).
- Tadesse, M.; Wahl, T.; Cid, A. Data-Driven Modeling of Global Storm Surges. Front. Mar. Sci. 2020, 7, 260. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Prediction of Storm Surge and Inundation Using Climatological Datasets for the Indian Coast Using Soft Computing Techniques. Soft Comput. 2019, 23, 12363–12383. [Google Scholar] [CrossRef]
- Xu, K.; Han, Z.; Xu, H.; Bin, L. Rapid Prediction Model for Urban Floods Based on a Light Gradient Boosting Machine Approach and Hydrological–Hydraulic Model. Int. J. Disaster Risk Sci. 2023, 14, 79–97. [Google Scholar] [CrossRef]
- Kim, S.; Pan, S.; Mase, H. Artificial Neural Network-Based Storm Surge Forecast Model: Practical Application to Sakai Minato, Japan. Appl. Ocean Res. 2019, 91, 101871. [Google Scholar] [CrossRef]
- Tseng, C.M.; Jan, C.D.; Wang, J.S.; Wang, C.M. Application of Artificial Neural Networks in Typhoon Surge Forecasting. Ocean Eng. 2007, 34, 1757–1768. [Google Scholar] [CrossRef]
- Ishida, K.; Tsujimoto, G.; Ercan, A.; Tu, T.; Kiyama, M.; Amagasaki, M. Hourly-Scale Coastal Sea Level Modeling in a Changing Climate Using Long Short-Term Memory Neural Network. Sci. Total Environ. 2020, 720, 137613. [Google Scholar] [CrossRef]
- Wang, T.; Liu, T.; Lu, Y. A Hybrid Multi-Step Storm Surge Forecasting Model Using Multiple Feature Selection, Deep Learning Neural Network and Transfer Learning. Soft Comput. 2022, 27, 935–952. [Google Scholar] [CrossRef]
- Xie, W.; Xu, G.; Zhang, H.; Dong, C. Developing a Deep Learning-Based Storm Surge Forecasting Model. Ocean Model. 2023, 182, 102179. [Google Scholar] [CrossRef]
- Bai, L.-H.; Xu, H. Accurate Storm Surge Forecasting Using the Encoder–Decoder Long Short Term Memory Recurrent Neural Network. Phys. Fluids 2022, 34, 016601. [Google Scholar] [CrossRef]
- Dai, W.; Tang, Y.; Zhang, Z.; Cai, Z. Ensemble Learning Technology for Coastal Flood Forecasting in Internet-of-Things-Enabled Smart City. Int. J. Comput. Intell. Syst. 2021, 14, 166. [Google Scholar] [CrossRef]
- Lecacheux, S.; Rohmer, J.; Paris, F.; Pedreros, R.; Quetelard, H.; Bonnardot, F. Toward the Probabilistic Forecasting of Cyclone-Induced Marine Flooding by Overtopping at Reunion Island Aided by a Time-Varying Random-Forest Classification Approach. Nat. Hazards 2021, 105, 227–251. [Google Scholar] [CrossRef]
- Lee, J.-W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid Prediction of Peak Storm Surge from Tropical Cyclone Track Time Series Using Machine Learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Tausía, J.; Delaux, S.; Camus, P.; Rueda, A.; Méndez, F.; Bryan, K.R.; Pérez, J.; Costa, C.G.R.; Zyngfogel, R.; Cofiño, A. Rapid Response Data-Driven Reconstructions for Storm Surge around New Zealand. Appl. Ocean Res. 2023, 133, 103496. [Google Scholar] [CrossRef]
- Adeli, E.; Sun, L.; Wang, J.; Taflanidis, A.A. An Advanced Spatio-Temporal Convolutional Recurrent Neural Network for Storm Surge Predictions. Neural Comput. Appl. 2023, 35, 18971–18987. [Google Scholar] [CrossRef]
- Kyprioti, A.P.; Irwin, C.; Taflanidis, A.A.; Nadal-Caraballo, N.C.; Yawn, M.C.; Aucoin, L.A. Spatio-Temporal Storm Surge Emulation Using Gaussian Process Techniques. Coast. Eng. 2023, 180, 104231. [Google Scholar] [CrossRef]
- Huang, P.-C. An Effective Alternative for Predicting Coastal Floodplain Inundation by Considering Rainfall, Storm Surge, and Downstream Topographic Characteristics. J. Hydrol. 2022, 607, 127544. [Google Scholar] [CrossRef]
- Pachev, B.; Arora, P.; del-Castillo-Negrete, C.; Valseth, E.; Dawson, C. A Framework for Flexible Peak Storm Surge Prediction 2023. arXiv 2023, arXiv:2204.13168. [Google Scholar]
- Xie, W.; Xu, G.; Dong, C. Research on Storm Surge Floodplain Prediction Based on ConvLSTM Machine Learning. Transcations Atmos. Sci. 2022, 45, 674–687. [Google Scholar]
- Fernández-Montblanc, T.; Vousdoukas, M.; Ciavola, P.; Voukouvalas, E.; Mentaschi, L.; Breyiannis, G.; Feyen, L.; Salamon, P. Towards Robust Pan-European Storm Surge Forecasting. Ocean Model. 2019, 133, 129–144. [Google Scholar] [CrossRef]
- Bontempi, G.; Ben Taieb, S.; Le Borgne, Y.-A. Machine Learning Strategies for Time Series Forecasting. In Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15–21, 2012, Tutorial Lectures; Aufaure, M.-A., Zimányi, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 62–77. ISBN 978-3-642-36318-4. [Google Scholar]
- Guo, M.; Bai, Z.; An, H.Z. Multi-Step Prediction for Nonlinear Autoregressive Models Based on Empirical Distributions. Stat. Sin. 1999, 9, 559–570. [Google Scholar]
- Tissot, P.E.; Cox, D.T.; Michaud, P. Neural Network Forecasting of Storm Surges along the Gulf of Mexico. In Proceedings of the Fourth International Symposium on Ocean Wave Measurement and Analysis; American Society of Civil Engineers: San Francisco, CA, USA, 29 March, 2002; pp. 1535–1544. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Igarashi, Y.; Tajima, Y. Application of Recurrent Neural Network for Prediction of the Time-Varying Storm Surge. Coast. Eng. J. 2021, 63, 68–82. [Google Scholar] [CrossRef]
- Siek, M.; Solomatine, D. Nonlinear Chaotic Model for Predicting Storm Surges. Nonlinear Process. Geophys. 2010, 17, 405–420. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Chen, Z.; Zhang, C.; Yu, H. Spatiotemporal Forecasting in Earth System Science: Methods, Uncertainties, Predictability and Future Directions. Earth-Sci. Rev. 2021, 222, 103828. [Google Scholar] [CrossRef]
- Kim, S.-W.; Melby, J.A.; Nadal-Caraballo, N.C.; Ratcliff, J. A Time-Dependent Surrogate Model for Storm Surge Prediction Based on an Artificial Neural Network Using High-Fidelity Synthetic Hurricane Modeling. Nat. Hazards 2015, 76, 565–585. [Google Scholar] [CrossRef]
- Rezaie, A.M.; Haque, A. Development of Storm Surge Inundation Model and Database for Enhanced Climate Services in Bangladesh. Front. Water 2022, 4, 887631. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Hu, P.; Mo, D.; Li, J.; Du, M.; Yan, J.; Hou, Y.; Yin, B. Numerical Study of Storm Surge-Induced Coastal Inundation in Laizhou Bay, China. Front. Mar. Sci. 2022, 9, 952406. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Song, Z.; Zhang, D.; Hu, D.; Guo, F. A FVCOM Study of the Potential Coastal Flooding in Apponagansett Bay and Clarks Cove, Dartmouth Town (MA). Nat. Hazards 2020, 103, 2787–2809. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. A Comprehensive Data Set for Tropical Cyclone Storm Surge-Induced Inundation for the East Coast of India. Int. J. Climatol. 2018, 38, 403–419. [Google Scholar] [CrossRef]
- Lee, T.-L. Neural Network Prediction of a Storm Surge. Ocean Eng. 2006, 33, 483–494. [Google Scholar] [CrossRef]
- Hien, N.T.; Tran, C.T.; Nguyen, X.H.; Kim, S.; Phai, V.D.; Thuy, N.B.; Van Manh, N. Genetic Programming for Storm Surge Forecasting. Ocean Eng. 2020, 215, 107812. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. On the Importance of the Forward Speed of Hurricanes in Storm Surge Forecasting: A Numerical Study. Geophys. Res. Lett. 2009, 36, L07609. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.; Qi, P.; Wang, K. The Impact of Different Historical Typhoon Tracks on Storm Surge: A Case Study of Zhejiang, China. J. Mar. Syst. 2020, 206, 103318. [Google Scholar] [CrossRef]
- Ramos-Valle, A.N.; Curchitser, E.N.; Bruyère, C.L. Impact of Tropical Cyclone Landfall Angle on Storm Surge along the Mid-Atlantic Bight. J. Geophys. Res. Atmos. 2020, 125, e2019JD031796. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global Increase in Major Tropical Cyclone Exceedance Probability over the Past Four Decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, E.; Choi, Y.; Seo, G.; Kim, Y.; Kim, H. Storm Surge Forecasting along Korea Strait Using Artificial Neural Network. J. Mar. Sci. Eng. 2022, 10, 535. [Google Scholar] [CrossRef]
- Rus, M.; Fettich, A.; Kristan, M.; Ličer, M. HIDRA2: Deep-Learning Ensemble Sea Level and Storm Tide Forecasting in the Presence of Seiches–the Case of the Northern Adriatic. Geosci. Model Dev. 2023, 16, 271–288. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M.; Coulomb, A.; Martín Míguez, B.; Bonnetain, P.; Boucher, C.; Gravelle, M.; Simon, B.; Tiphaneau, P. Rescue of the Historical Sea Level Record of Marseille (France) from 1885 to 1988 and Its Extension Back to 1849–1851. J. Geod. 2014, 88, 869–885. [Google Scholar] [CrossRef]
- Quintana, G.I.; Tandeo, P.; Drumetz, L.; Leballeur, L.; Pavec, M. Statistical Forecast of the Marine Surge. Nat. Hazards 2021, 108, 2905–2917. [Google Scholar] [CrossRef]
- de Oliveira, M.M.F.; Ebecken, N.F.F.; de Oliveira, J.L.F.; de Azevedo Santos, I. Neural Network Model to Predict a Storm Surge. J. Appl. Meteorol. Climatol. 2009, 48, 143–155. [Google Scholar] [CrossRef]
- Kim, S.; Matsumi, Y.; Pan, S.; Mase, H. A Real-Time Forecast Model Using Artificial Neural Network for after-Runner Storm Surges on the Tottori Coast, Japan. Ocean Eng. 2016, 122, 44–53. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Shi, F.; Hong, H.-S.; Shang, S.-P.; Kirby, J.T. Tide-Surge Interaction Intensified by the Taiwan Strait. J. Geophys. Res. 2010, 115, C06012. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, D.; Zhang, J. Effects of Nonlinear Terms and Topography in a Storm Surge Model along the Southeastern Coast of China: A Case Study of Typhoon Chan-Hom. Nat. Hazards 2021, 107, 551–574. [Google Scholar] [CrossRef]
- Jia, G.; Taflanidis, A.A.; Nadal-Caraballo, N.C.; Melby, J.A.; Kennedy, A.B.; Smith, J.M. Surrogate Modeling for Peak or Time-Dependent Storm Surge Prediction over an Extended Coastal Region Using an Existing Database of Synthetic Storms. Nat. Hazards 2016, 81, 909–938. [Google Scholar] [CrossRef]
- Wei, Z.; Nguyen, H.C. Storm Surge Forecast Using an Encoder–Decoder Recurrent Neural Network Model. J. Mar. Sci. Eng. 2022, 10, 1980. [Google Scholar] [CrossRef]
- Bezuglov, A.; Blanton, B.; Santiago, R. Multi-Output Artificial Neural Network for Storm Surge Prediction in North Carolina. arXiv 2016, arXiv:1609.07378. [Google Scholar]
- Ayyad, M.; Hajj, M.R.; Marsooli, R. Machine Learning-Based Assessment of Storm Surge in the New York Metropolitan Area. Sci. Rep. 2022, 12, 19215. [Google Scholar] [CrossRef] [PubMed]
- Ayyad, M.; Hajj, M.R.; Marsooli, R. Artificial Intelligence for Hurricane Storm Surge Hazard Assessment. Ocean Eng. 2022, 245, 110435. [Google Scholar] [CrossRef]
- Lockwood, J.W.; Lin, N.; Oppenheimer, M.; Lai, C.-Y. Using Neural Networks to Predict Hurricane Storm Surge and to Assess the Sensitivity of Surge to Storm Characteristics. J. Geophys. Res. Atmos. 2022, 127, e2022JD037617. [Google Scholar] [CrossRef]
- Tiggeloven, T.; Couasnon, A.; Van Straaten, C.; Muis, S.; Ward, P.J. Exploring Deep Learning Capabilities for Surge Predictions in Coastal Areas. Sci. Rep. 2021, 11, 17224. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Zheng, L. Hurricane Storm Surge Simulations for Tampa Bay. Estuaries Coasts 2006, 29, 899–913. [Google Scholar] [CrossRef]
- Irish, J.L.; Resio, D.T.; Ratcliff, J.J. The Influence of Storm Size on Hurricane Surge. J. Phys. Oceanogr. 2008, 38, 2003–2013. [Google Scholar] [CrossRef]
- Kong, X. A Numerical Study on the Impact of Tidal Waves on the Storm Surge in the North of Liaodong Bay. Acta Oceanol. Sin. 2014, 33, 35–41. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yasuda, T.; Mase, H. Numerical Analysis of Effects of Tidal Variations on Storm Surges and Waves. Appl. Ocean Res. 2008, 30, 311–322. [Google Scholar] [CrossRef]
- Lai, Y.; Li, Q.; Li, J.; Zhou, Q.; Zhang, X.; Wu, G. Evolution of Frequency and Intensity of Concurrent Heavy Precipitation and Storm Surge at the Global Scale: Implications for Compound Floods. Front. Earth Sci. 2021, 9, 660359. [Google Scholar] [CrossRef]
- Klerk, W.-J.; Winsemius, H.; Van Verseveld, W.; Bakker, A.; Diermanse, F. The Co-Incidence of Storm Surges and Extreme Discharges within the Rhine–Meuse Delta. Environ. Res. Lett. 2015, 10, 035005. [Google Scholar] [CrossRef]
- Salmun, H.; Molod, A.; Wisniewska, K.; Buonaiuto, F. Statistical Prediction of the Storm Surge Associated with Cool-Weather Storms at the Battery, New York. J. Appl. Meteorol. Climatol. 2011, 50, 273–282. [Google Scholar] [CrossRef]
- Chen, K.; Kuang, C.; Wang, L.; Chen, K.; Han, X.; Fan, J. Storm Surge Prediction Based on Long Short-Term Memory Neural Network in the East China Sea. Appl. Sci. 2022, 12, 181. [Google Scholar] [CrossRef]
- Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated Hydrodynamic and Machine Learning Models for Compound Flooding Prediction in a Data-Scarce Estuarine Delta. Nonlinear Process. Geophys. 2022, 29, 301–315. [Google Scholar] [CrossRef]
- Feng, X.-C.; Xu, H. Accurate Storm Surge Prediction Using a Multi-Recurrent Neural Network Structure. Phys. Fluids 2023, 35, 037108. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. arXiv 2016, arXiv:1606.05386. [Google Scholar]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable Ai: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Molnar, C.; König, G.; Herbinger, J.; Freiesleben, T.; Dandl, S.; Scholbeck, C.A.; Casalicchio, G.; Grosse-Wentrup, M.; Bischl, B. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models. In Proceedings of the International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, Vienna, Austria, 17 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 39–68. [Google Scholar]
- Chauhan, N.K.; Singh, K. A Review on Conventional Machine Learning vs Deep Learning. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), New Delhi, India, 28–29 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 347–352. [Google Scholar]
- Kyprioti, A.P.; Taflanidis, A.A.; Nadal-Caraballo, N.C.; Campbell, M. Storm Hazard Analysis over Extended Geospatial Grids Utilizing Surrogate Models. Coast. Eng. 2021, 168, 103855. [Google Scholar] [CrossRef]
- Yang, K.; Paramygin, V.A.; Sheng, Y.P. A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding. Weather Forecast. 2020, 35, 1663–1681. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Gayathri, S.; Lee, T.-L. Support Vector Regression Methodology for Storm Surge Predictions. Ocean Eng. 2008, 35, 1578–1587. [Google Scholar] [CrossRef]
- You, S.H.; Lee, Y.H.; Lee, W.J. Parameterization and Application of Storm Surge/Tide Modeling Using a Genetic Algorithm for Typhoon Periods. Adv. Atmos. Sci. 2011, 28, 1067–1076. [Google Scholar] [CrossRef]
- Schmidt, M.; Lipson, H. Distilling Free-Form Natural Laws from Experimental Data. Science 2009, 324, 81–85. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Sztobryn, M. Forecast of Storm Surge by Means of Artificial Neural Network. J. Sea Res. 2003, 49, 317–322. [Google Scholar] [CrossRef]
- Lee, T.-L. Back-Propagation Neural Network for the Prediction of the Short-Term Storm Surge in Taichung Harbor, Taiwan. Eng. Appl. Artif. Intell. 2008, 21, 63–72. [Google Scholar] [CrossRef]
- Lee, T.-L. Prediction of Storm Surge and Surge Deviation Using a Neural Network. J. Coast. Res. 2008, 4, 76–82. [Google Scholar] [CrossRef]
- Lee, T.-L. Predictions of Typhoon Storm Surge in Taiwan Using Artificial Neural Networks. Adv. Eng. Softw. 2009, 40, 1200–1206. [Google Scholar] [CrossRef]
- Liang, S.; Li, M.; Sun, Z. Prediction Models for Tidal Level Including Strong Meteorologic Effects Using a Neural Network. Ocean Eng. 2008, 35, 666–675. [Google Scholar] [CrossRef]
- You, S.H.; Seo, J.-W. Storm Surge Prediction Using an Artificial Neural Network Model and Cluster Analysis. Nat. Hazards 2009, 51, 97–114. [Google Scholar] [CrossRef]
- Chao, W.-T.; Young, C.-C. Accurate Storm Surge Prediction with a Parametric Cyclone and Neural Network Hybrid Model. Water 2022, 14, 96. [Google Scholar] [CrossRef]
- Tedesco, P.; Rabault, J.; Sætra, M.L.; Kristensen, N.M.; Aarnes, O.J.; Breivik, Ø.; Mauritzen, C.; Sætra, Ø. Bias Correction of Operational Storm Surge Forecasts Using Neural Networks 2023. arXiv 2023, arXiv:2301.00892. [Google Scholar]
- Bruneau, N.; Polton, J.; Williams, J.; Holt, J. Estimation of Global Coastal Sea Level Extremes Using Neural Networks. Environ. Res. Lett. 2020, 15, 074030. [Google Scholar] [CrossRef]
- Si-qi, J.; Qiang, L. The BP Neural Network Optimized by Beetle Antenna Search Algorithm for Storm Surge Prediction. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Shanghai, China, 14–19 June 2020; ISOPE: Mountain View, CA, USA, 2020; p. ISOPE-I. [Google Scholar]
- Vincent, G.; Kimble, R.; Bhattacharya, S.; Blanton, B. Hybrid Machine Learning Models for Storm Surge Prediction. Available online: https://ai-2-ase.github.io/papers/27%5CCameraReady%5CAAAI-22-final-paper.pdf (accessed on 29 August 2023).
- Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere 2021, 12, 512. [Google Scholar] [CrossRef]
- Li, L.; Wu, W.; Zhang, W.; Zhu, Z.; Li, Z.; Wang, Y.; Niu, S. Storm Surge Level Prediction Based on Improved NARX Neural Network. J. Comput. Electron. 2023, 22, 783–804. [Google Scholar] [CrossRef]
- Ian, V.-K.; Tse, R.; Tang, S.-K.; Pau, G. Performance Analysis of Machine Learning Algorithms in Storm Surge Prediction. In Proceedings of the IoTBDS 2022-7th International Conference on Internet of Things, Big Data and Security, Online Streaming, 22–24 April 2022; pp. 297–303. [Google Scholar]
- Ian, V.-K.; Tse, R.; Tang, S.-K.; Pau, G. Bridging the Gap: Enhancing Storm Surge Prediction and Decision Support with Bidirectional Attention-Based LSTM. Atmosphere 2023, 14, 1082. [Google Scholar] [CrossRef]
- Davila Hernandez, C.; Ho, J.; Kim, D.; Oubeidillah, A. Machine-Learning-Based Model for Hurricane Storm Surge Forecasting in the Lower Laguna Madre. Algorithms 2023, 16, 232. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Wang, B.; Wu, W.; Wang, J.; Shen, D. Multi-Step Ahead Short-Term Predictions of Storm Surge Level Using CNN and LSTM Network. Acta Oceanol. Sin. 2021, 40, 104–118. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Godbole, V.; Dahl, G.E.; Gilmer, J.; Shallue, C.J.; Nado, Z. Deep Learning Tuning Playbook 2023. Available online: https://github.com/google-research/tuning_playbook (accessed on 31 July 2023).
- Haupt, S.E.; Chapman, W.; Adams, S.V.; Kirkwood, C.; Hosking, J.S.; Robinson, N.H.; Lerch, S.; Subramanian, A.C. Towards Implementing Artificial Intelligence Post-Processing in Weather and Climate: Proposed Actions from the Oxford 2019 Workshop. Philos. Trans. R. Soc. A 2021, 379, 20200091. [Google Scholar] [CrossRef]
- Chen, W.-B.; Liu, W.-C.; Hsu, M.-H. Predicting Typhoon-Induced Storm Surge Tide with a Two-Dimensional Hydrodynamic Model and Artificial Neural Network Model. Nat. Hazards Earth Syst. Sci. 2012, 12, 3799–3809. [Google Scholar] [CrossRef]
- Pasquali, D.; Di Risio, M.; De Girolamo, P. A Simplified Real Time Method to Forecast Semi-Enclosed Basins Storm Surge. Estuar. Coast. Shelf Sci. 2015, 165, 61–69. [Google Scholar] [CrossRef]
- Tayel, M.; Oumeraci, H. A Hybrid Approach Using Hydrodynamic Modeling and Artificial Neural Networks for Extreme Storm Surge Prediction. Coast. Eng. J. 2015, 57, 1540004-1–1540004-36. [Google Scholar] [CrossRef]
- Srinivas Kolukula, S.; Murty, P.L.N. Improving Cyclone Wind Fields Using Deep Convolutional Neural Networks and Their Application in Extreme Events. Prog. Oceanogr. 2022, 202, 102763. [Google Scholar] [CrossRef]
- Mulia, I.E.; Ueda, N.; Miyoshi, T.; Iwamoto, T.; Heidarzadeh, M. A Novel Deep Learning Approach for Typhoon-Induced Storm Surge Modeling through Efficient Emulation of Wind and Pressure Fields. Sci. Rep. 2023, 13, 7918. [Google Scholar] [CrossRef]
- French, J.; Mawdsley, R.; Fujiyama, T.; Achuthan, K. Combining Machine Learning with Computational Hydrodynamics for Prediction of Tidal Surge Inundation at Estuarine Ports. Procedia IUTAM 2017, 25, 28–35. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guide to Storm Surge Forecasting; Joint WMO/IOC for Oceanographic and Marine Meteorology (JCOMM): Akureyri, Iceland, 2011; ISBN 978-92-63-11076-3. [Google Scholar]
- Cheng, S.; Quilodrán-Casas, C.; Ouala, S.; Farchi, A.; Liu, C.; Tandeo, P.; Fablet, R.; Lucor, D.; Iooss, B.; Brajard, J.; et al. Machine Learning with Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review. IEEE/CAA J. Autom. Sin. 2023, 10, 1361–1387. [Google Scholar] [CrossRef]
- Siek, M.; Solomatine, D.P. Real-Time Data Assimilation for Chaotic Storm Surge Model Using NARX Neural Network. J. Coast. Res. 2011, 64, 1189–1194. [Google Scholar]
- Watson, P.A.G. Machine Learning Applications for Weather and Climate Need Greater Focus on Extremes. Environ. Res. Lett. 2022, 17, 111004. [Google Scholar] [CrossRef]
- Ding, D.; Zhang, M.; Pan, X.; Yang, M.; He, X. Modeling Extreme Events in Time Series Prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1114–1122. [Google Scholar]
- Royston, S.; Lawry, J.; Horsburgh, K. A Linguistic Decision Tree Approach to Predicting Storm Surge. Fuzzy Sets Syst. 2013, 215, 90–111. [Google Scholar] [CrossRef]
- Wang, H.; Hu, S.; Li, X. An Interpretable Deep Learning ENSO Forecasting Model. Ocean-Land-Atmos. Res. 2023, 2, 0012. [Google Scholar] [CrossRef]
- De Burgh-Day, C.O.; Leeuwenburg, T. Machine Learning for Numerical Weather and Climate Modelling: A Review. EGUsphere 2023, 1–48. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Wang, W.; Shen, P.; Cai, Z.; Cai, H. A Multi-Site Tide Level Prediction Model Based on Graph Convolutional Recurrent Networks. Ocean Eng. 2023, 269, 113579. [Google Scholar] [CrossRef]
- Kashinath, K.; Mustafa, M.; Albert, A.; Wu, J.; Jiang, C.; Esmaeilzadeh, S.; Azizzadenesheli, K.; Wang, R.; Chattopadhyay, A.; Singh, A.; et al. Physics-Informed Machine Learning: Case Studies for Weather and Climate Modelling. Philos. Trans. R. Soc. A 2021, 379, 20200093. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- de Wolff, T.; Carrillo, H.; Martı, L.; Sanchez-Pi, N. Assessing Physics Informed Neural Networks in Ocean Modelling and Climate Change Applications. In Proceedings of the AI: Modeling Oceans and Climate Change Workshop at ICLR 2021, Virtual, Santiago, Chile, 7 May 2021. [Google Scholar]
- Leiteritz, R.; Hurler, M.; Pfluger, D. Learning Free-Surface Flow with Physics-Informed Neural Networks. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Virtual, 13–16 December 2021; IEEE: Pasadena, CA, USA, 2021; pp. 1668–1673. [Google Scholar]
- Pathak, J.; Subramanian, S.; Harrington, P.; Raja, S.; Chattopadhyay, A.; Mardani, M.; Kurth, T.; Hall, D.; Li, Z.; Azizzadenesheli, K.; et al. Fourcastnet: A Global Data-Driven High-Resolution Weather Model Using Adaptive Fourier Neural Operators. arXiv 2022, arXiv:2202.11214. [Google Scholar]
- Jiang, P.; Meinert, N.; Jordão, H.; Weisser, C.; Holgate, S.; Lavin, A.; Lütjens, B.; Newman, D.; Wainwright, H.; Walker, C.; et al. Digital Twin Earth–Coasts: Developing a Fast and Physics-Informed Surrogate Model for Coastal Floods via Neural Operators 2021. arXiv 2021, arXiv:2110.07100. [Google Scholar]
Formulation of Predicting Problems | Water Level Forecasting | Inundation Forecasting |
---|---|---|
Peak-value forecasting | [42,43] | |
Time-series forecasting | [50,51] | |
Spatio-temporal forecasting | [39,56,57,58] |
Study | Predictors | ||
---|---|---|---|
Typhoon Characteristics | Local Hydrodynamic Parameters | Local/Regional Meteorological Conditions | |
Sahoo and Bhaskaran [42] | Landfall location, approach angle, translation speed, maximum sustained wind speed | N/A 1 | N/A |
Kim et al. [44] | Longitude, latitude, central atmospheric pressure, wind speed near typhoon center, and surge level | Surge level | Wind speed, wind direction, sea-level pressure, drop of sea level pressure at five stations |
Al Kajbaf and Bensi [19] | Storm central pressure deficit, radius to maximum wind speed, forward velocity, heading direction, reference latitude and longitude | N/A | N/A |
Chen et al. [100] | Typhoon central pressure, central wind speed, moving speed, moving direction | Water level | Air pressure, wind speed, wind direction |
Lee et al. [52] | The time series of six TC parameters (latitude, longitude, heading direction, central pressure, radius of maximum winds, and translation speed). Beginning 30 h before passing the reference point and up to 9 h after passing the reference point | N/A | N/A |
Žust et al. [38] | N/A | Sea level (Tide and residual) | 10 m zonal and meridional winds, mean sea level pressure, air temperature at 2 m of the Adriatic basin |
Wei et al. [87] | Latitude, longitude, central pressure, distance between storm center and save point, radius of maximum winds, | Storm surge water level, storm-induced depth-averaged x-velocity, y-velocity | N/A |
Rus et al. [79] | N/A | Tide, sea surface height | 10 m zonal and meridional winds, mean sea level pressure of the Adriatic basin |
Xie et al. [48] | N/A | Previous 24-h sea level | Previous 6-h wind field data |
Combination | Index | S | SPL | SWL | SPWL | SPWLVI | SPWLVI + Lat&Lon |
---|---|---|---|---|---|---|---|
t + 1 | CC | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
RMSE(cm) | 9.66 | 9.25 | 8.97 | 9.11 | 9.09 | 9.00 | |
(cm) | −8.01 | −1.14 | −4.99 | −1.42 | −4.43 | −4.10 | |
t + 2 | CC | 0.92 | 0.94 | 0.95 | 0.94 | 0.94 | 0.94 |
RMSE(cm) | 13.16 | 11.69 | 10.70 | 11.57 | 12.11 | 11.83 | |
(cm) | −17.74 | −2.01 | −7.66 | −2.15 | −4.94 | 3.24 | |
t + 3 | CC | 0.87 | 0.91 | 0.93 | 0.90 | 0.91 | 0.91 |
RMSE(cm) | 17.10 | 14.19 | 13.41 | 15.14 | 15.56 | 14.98 | |
(cm) | −26.36 | −6.32 | −18.96 | −7.51 | −13.35 | −0.83 | |
t + 6 | CC | 0.73 | 0.86 | 0.91 | 0.85 | 0.89 | 0.92 |
RMSE(cm) | 23.88 | 19.59 | 18.20 | 20.76 | 19.29 | 16.14 | |
(cm) | −45.86 | −38.43 | −35.75 | −33.82 | −41.90 | −21.68 | |
t + 9 | CC | 0.48 | 0.71 | 0.84 | 0.52 | 0.67 | 0.81 |
RMSE(cm) | 31.16 | 27.00 | 23.49 | 31.72 | 27.23 | 21.66 | |
(cm) | −64.97 | −62.24 | −47.63 | −40.32 | −55.18 | −15.55 | |
t + 12 | CC | 0.28 | 0.66 | 0.80 | 0.65 | 0.71 | 0.91 |
RMSE(cm) | 35.30 | 29.42 | 26.71 | 29.58 | 26.63 | 17.26 | |
(cm) | −66.04 | −74.60 | −66.89 | −62.02 | −49.78 | −20.64 | |
t + 18 | CC | 0.08 | 0.45 | 0.79 | 0.37 | 0.32 | 0.76 |
RMSE(cm) | 38.30 | 34.03 | 29.47 | 36.40 | 41.10 | 24.78 | |
(cm) | −76.56 | −76.77 | −70.86 | −47.65 | −31.40 | −27.65 | |
t + 24 | CC | 0.15 | 0.45 | 0.74 | 0.59 | 0.58 | 0.82 |
RMSE(cm) | 39.07 | 35.44 | 33.35 | 35.27 | 34.05 | 23.97 | |
(cm) | −83.90 | −77.66 | −80.70 | −76.76 | −64.36 | −28.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Su, C.; Chu, D.; Zhang, J.; Song, J. A Review of Application of Machine Learning in Storm Surge Problems. J. Mar. Sci. Eng. 2023, 11, 1729. https://doi.org/10.3390/jmse11091729
Qin Y, Su C, Chu D, Zhang J, Song J. A Review of Application of Machine Learning in Storm Surge Problems. Journal of Marine Science and Engineering. 2023; 11(9):1729. https://doi.org/10.3390/jmse11091729
Chicago/Turabian StyleQin, Yue, Changyu Su, Dongdong Chu, Jicai Zhang, and Jinbao Song. 2023. "A Review of Application of Machine Learning in Storm Surge Problems" Journal of Marine Science and Engineering 11, no. 9: 1729. https://doi.org/10.3390/jmse11091729