Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative
Abstract
:1. Introduction
2. Description of the Proposed System
2.1. Working Principles
2.2. Simulated Magnetic Field
- B: magnetic field (T);
- : constant of vacuum magnetic permeability;
- : number of turns in the coil;
- : electric current (A);
- : coil radius (m).
- B = 10,000 µT;
- = ;
- = ?;
- = 2.5 A;
- = 0.14 m.
- Equation (1) yields N ≈ 891 turns.
2.3. Linearity of the Selected Sensor
2.4. Temperature Sensor
2.5. Micro-SD Card Module
3. Materials and Methods
3.1. Sensor Validation
3.1.1. Determination of the Limit of Detection and Quantitation
3.1.2. Determination of Thermal Drift
4. Experiments
4.1. Laboratory Tests
4.2. Offshore Field Test
4.3. Device Response
5. Results and Discussion
5.1. Laboratory Test
5.2. Offshore Field Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AWG | American wire gauge |
GMF | Earth´s magnetic field |
UK | United Kingdom |
USA | United States of America |
Vin | Voltage input |
N | North |
W | West |
OTEC-1 | Ocean thermal energy conversion-1 |
BCS-CEMIE | Baja California Sur-Centro Mexicano de Innovacion en Energia |
CONACYT | Consejo Nacional de Ciencia y Tecnologia |
CTD | Conductivity temperature depth |
Vdc | Voltage in direct current |
Vcc | Power supply voltage |
V0 | Quiescent output voltage |
GND | Ground |
Vout | Output voltage |
Icc | Supply current |
Iout | Output current |
AC | Alternating current |
DC | Direct current |
XLPE | Cross linked polyethylene |
HVDC | High voltage direct current |
SPC | Submarine power cable |
MISO | Master in slave out |
MOSI | Master out slave in |
SCK | Serial clock |
CS | Chip select |
SD | Secure digital |
RSD | Relative standard deviation |
LOD | Limit of detection |
LOQ | Limit of quantitation |
r | Radius |
X | Distance |
TA | Ambient temperature |
µ0 | Vacuum magnetic permittivity |
B | Magnetic field |
N | Number of turns |
I | Electric current |
dBx | Component of the magnetic field on the x-axis |
dBy | Component of the magnetic field on the y-axis |
dBz | Component of the magnetic field on the z-axis |
min | Minutes |
Appendix A
Power Transmission System | Capacity (A, kV, MW, Hz) | Distance from the Cable Centre (m) | Magnetic Induction (µT) | Reference |
---|---|---|---|---|
GMF | 30–70 | [19] | ||
Monopolar DC | 500 A | Surface (0 m) | 2000 | [20] |
5 m above | 20 | |||
20 m above | 5 | |||
1200 A (312 MW at 260 kV) | Surface (0 m) | 5000 | ||
5 m above | 50 | |||
1500 A | On the seabed | 300 | [21] | |
5 m above the seabed | 50 | |||
200 m above the seabed (burial depth not found) | 13 | |||
DC double-case system (10 m separations) | 1330 A | Surface (0 m) | >500 | [22] |
5 m from one cable | <50 | |||
AC three-phase cables | 350 A, 132 kV, 50 Hz | Surface (0 m) | 1.6 | [23] |
60 A, 11 kV, 50 Hz | Surface (0 m) | 0.055 | ||
5 m from the cable | 0.046 | |||
50 A, 33 kV, 50 Hz | Surface (0 m) | 0.05 | ||
5 m from the cable | 0.012 | |||
400 m from the cable | 0.00005 | |||
AC XLEP | 641 A, 33 kV | Surface (0 m) | 1.7 | |
2.5 m from the cable | 0.61 | |||
AC three-core PEX-composite cable | 600 A, 132 kV | 2 m above the cable | 5 | [24] |
AC three-phase cables (XLPE cable) | 265 A, 33 kV | On the seabed (cable buried at 1.5 m depth) | 1.5 | [25] |
132.5 A, 33 kV | On the seabed (cable buried at 1.5 m depth) | 0.9 | ||
350 A, 132 kV | Surface (0 m) | 1.6 | [26] |
Supply Current I (A) | Magnetic Field Sensor 1 (mT) | Magnetic Field Sensor 2 (mT) | ||||
Theoretical | Measured Increasing | Measured Decreasing | Theoretical | Measured Increasing | Measured Decreasing | |
0.00 | 0.00 | 0.05 | 0.04 | 0.00 | 0.00 | 0.02 |
0.25 | 0.79 | 0.71 | 0.58 | 0.66 | 0.64 | 0.52 |
0.50 | 1.59 | 1.61 | 1.56 | 1.33 | 1.25 | 1.20 |
0.75 | 2.38 | 2.40 | 2.34 | 1.99 | 1.97 | 1.95 |
1.00 | 3.17 | 3.20 | 3.15 | 2.65 | 2.64 | 2.62 |
1.25 | 3.97 | 4.01 | 3.91 | 3.31 | 3.31 | 3.27 |
1.50 | 4.76 | 4.79 | 4.73 | 3.98 | 3.97 | 3.98 |
1.75 | 5.55 | 5.57 | 5.53 | 4.64 | 4.65 | 4.66 |
2.00 | 6.35 | 6.38 | 6.34 | 5.30 | 5.31 | 5.35 |
2.25 | 7.14 | 7.16 | 7.12 | 5.96 | 5.98 | 6.01 |
2.50 | 7.93 | 8.01 | 8.01 | 6.63 | 6.65 | 6.65 |
Supply current I (A) | Magnetic Field Sensor 3 (mT) | Magnetic Field Sensor 4 (mT) | ||||
Theoretical | Measured Increasing | Measured Decreasing | Theoretical | Measured Increasing | Measured Decreasing | |
0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 |
0.25 | 0.43 | 0.45 | 0.41 | 0.25 | 0.24 | 0.22 |
0.50 | 0.85 | 0.86 | 0.84 | 0.5 | 0.48 | 0.46 |
0.75 | 1.28 | 1.31 | 1.29 | 0.76 | 0.77 | 0.75 |
1.00 | 1.71 | 1.72 | 1.69 | 1.01 | 1.00 | 0.98 |
1.25 | 2.14 | 2.15 | 2.12 | 1.26 | 1.28 | 1.25 |
1.50 | 2.56 | 2.58 | 2.56 | 1.51 | 1.53 | 1.50 |
1.75 | 2.99 | 3.01 | 2.98 | 1.76 | 1.78 | 1.75 |
2.00 | 3.42 | 3.39 | 3.35 | 2.02 | 2.11 | 2.09 |
2.25 | 3.85 | 3.84 | 3.82 | 2.27 | 2.31 | 2.29 |
2.50 | 4.27 | 4.25 | 4.25 | 2.52 | 2.55 | 2.55 |
Sensor 1 | Sensor 2 | ||||||||
Theoretical Magnetic Field (mT) | Measured Average (mT) | Repeatability | LOQ (mT) | LOD (mT) | Theoretical Magnetic Field (mT) | Measured Average (mT) | Repeatability | LOQ (mT) | LOD (mT) |
0.79 | 0.71 | 0.95 | 0.07 | 0.02 | 0.66 | 0.64 | 1.65 | 0.10 | 0.03 |
1.59 | 1.61 | 0.29 | 0.05 | 0.01 | 1.33 | 1.25 | 1.25 | 0.16 | 0.05 |
2.38 | 2.40 | 0.18 | 0.04 | 0.01 | 1.99 | 1.97 | 0.84 | 0.16 | 0.05 |
3.17 | 3.20 | 0.15 | 0.05 | 0.01 | 2.65 | 2.64 | 0.84 | 0.22 | 0.07 |
3.97 | 4.01 | 0.13 | 0.05 | 0.02 | 3.31 | 3.31 | 0.84 | 0.28 | 0.08 |
4.76 | 4.79 | 0.09 | 0.04 | 0.01 | 3.98 | 3.97 | 0.51 | 0.20 | 0.06 |
5.55 | 5.57 | 0.08 | 0.04 | 0.01 | 4.64 | 4.65 | 0.35 | 0.16 | 0.05 |
6.35 | 6.38 | 0.13 | 0.08 | 0.03 | 5.30 | 5.31 | 0.37 | 0.19 | 0.06 |
7.14 | 7.16 | 0.07 | 0.05 | 0.01 | 5.96 | 5.98 | 0.20 | 0.12 | 0.03 |
7.93 | 8.01 | 0.04 | 0.03 | 0.01 | 6.63 | 6.65 | 0.18 | 0.12 | 0.04 |
Sensor 3 | Sensor 4 | ||||||||
Theoretical Magnetic Field (mT) | Measured Average (mT) | Repeatability | LOQ (mT) | LOD (mT) | Theoretical Magnetic Field (mT) | Measured Average (mT) | Repeatability | LOQ (mT) | LOD (mT) |
0.43 | 0.45 | 1.40 | 0.06 | 0.02 | 0.25 | 0.24 | 3.39 | 0.08 | 0.02 |
0.85 | 0.86 | 1.28 | 0.11 | 0.03 | 0.50 | 0.48 | 1.39 | 0.06 | 0.02 |
1.28 | 1.31 | 1.20 | 0.16 | 0.05 | 0.76 | 0.77 | 1.34 | 0.10 | 0.03 |
1.71 | 1.72 | 0.90 | 0.16 | 0.05 | 1.01 | 1.00 | 1.26 | 0.12 | 0.04 |
2.14 | 2.15 | 0.86 | 0.19 | 0.05 | 1.26 | 1.28 | 1.04 | 0.13 | 0.04 |
2.56 | 2.58 | 0.80 | 0.21 | 0.06 | 1.51 | 1.53 | 0.98 | 0.15 | 0.04 |
2.99 | 3.01 | 0.75 | 0.23 | 0.07 | 1.76 | 1.78 | 0.93 | 0.16 | 0.05 |
3.42 | 3.39 | 0.42 | 0.14 | 0.04 | 2.02 | 2.11 | 0.89 | 0.18 | 0.06 |
3.85 | 3.84 | 0.36 | 0.14 | 0.04 | 2.27 | 2.31 | 0.90 | 0.20 | 0.06 |
4.27 | 4.25 | 0.35 | 0.15 | 0.04 | 2.52 | 2.55 | 0.81 | 0.20 | 0.06 |
References
- Andreas, U.; Davide, M. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar]
- Huckerby, J.; Jeffrey, H.; Sedwick, J.; Jay, B.; Finlay, L. An International Vision for Ocean Energy-Version II. Available online: http://www.policyandinnovationedinburgh.org/uploads/3/1/4/1/31417803/oes_booklet_fa_print_08_10_2012.pdf (accessed on 21 April 2022).
- Lewis, A.; Estefen, S.; Huckerby, J.; Musial, W.; Pontes, T.; Torres-Martinez, J. Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011; pp. 497–533. [Google Scholar]
- Brito e Melo, A.; Villate, J.L. Ocean Energy Systems Annual Report. 2014. Available online: https://report2014.ocean-energy-systems.org/ (accessed on 15 April 2022).
- Fontes, J.V.H.; Martínez, M.L.; Wojtarowski, A.; González-Mendoza, J.L.; Landgrave, R.; Silva, R. Is ocean energy an alternative in developing regions? A case study in Michoacan, Mexico. J. Clean. Prod. 2020, 266, 121984. [Google Scholar] [CrossRef]
- Wilberforce, T.; El Hassan, Z.; Durrant, A.; Thompson, J.; Soudan, B.; Olabi, A. Overview of ocean power technology. Energy 2019, 175, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.; Vázquez, G.; Pérez-Maqueo, O.; Silva, R.; Moreno-Casasola, P.; Mendoza-González, G.; López-Portillo, J.; MacGregor-Fors, I.; Heckel, G.; Hernández-Santana, J.; et al. A systemic view of potential environmental impacts of ocean energy production. Renew. Sustain. Energy Rev. 2021, 149, 111332. [Google Scholar] [CrossRef]
- Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sustain. Energy Rev. 2018, 96, 380–391. [Google Scholar] [CrossRef]
- Petersen, J.K.; Malm, T. Offshore Windmill Farms: Threats to or Possibilities for the Marine Environment. AMBIO A J. Hum. Environ. 2006, 35, 75–80. [Google Scholar] [CrossRef]
- Durif, C.M.F.; Nyqvist, D.; Taormina, B.; Shema, S.D.; Skiftesvik, A.B.; Freytet, F.; Browman, H.I. Magnetic fields generated by submarine power cables have a negligible effect on the swimming behavior of Atlantic lumpfish (Cyclopterus lumpus) juveniles. PeerJ 2023, 11, e14745. [Google Scholar] [CrossRef]
- Fey, D.P.; Jakubowska, M.; Greszkiewicz, M.; Andrulewicz, E.; Otremba, Z.; Urban-Malinga, B. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish? Aquat. Toxicol. 2019, 209, 150–158. [Google Scholar] [CrossRef]
- Scott, K.; Harsanyi, P.; Easton, B.A.A.; Piper, A.J.R.; Rochas, C.M.V.; Lyndon, A.R. Exposure to Electromagnetic Fields (EMF) from Submarine Power Cables Can Trigger Strength-Dependent Behavioural and Physiological Responses in Edible Crab, Cancer pagurus (L.). J. Mar. Sci. Eng. 2021, 9, 776. [Google Scholar] [CrossRef]
- Cresci, A.; Perrichon, P.; Durif, C.M.; Sørhus, E.; Johnsen, E.; Bjelland, R.; Larsen, T.; Skiftesvik, A.B.; Browman, H.I. Magnetic fields generated by the DC cables of offshore wind farms have no effect on spatial distribution or swimming behavior of lesser sandeel larvae (Ammodytes marinus). Mar. Environ. Res. 2022, 176, 105609. [Google Scholar] [CrossRef]
- Cai, L.; Chen, L.; Devaux, F.; Long, Y. Long-Distance Transport of Green Power via High Voltage Direct Current Submarine Cable. E3S Web Conf. 2022, 350, 02001. [Google Scholar] [CrossRef]
- Stan, A.; Costinaș, S.; Ion, G. Overview and Assessment of HVDC Current Applications and Future Trends. Energies 2022, 15, 1193. [Google Scholar] [CrossRef]
- Halawa, E.; James, G.; Shi, X.; Sari, N.H.; Nepal, R. The Prospect for an Australian–Asian Power Grid: A Critical Appraisal. Energies 2018, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Schell, K.R.; Claro, J.; Guikema, S.D. Probabilistic cost prediction for submarine power cable projects. Int. J. Electr. Power Energy Syst. 2017, 90, 1–9. [Google Scholar] [CrossRef]
- Wood, M.P.; Carter, L. Whale Entanglements with Submarine Telecommunication Cables. IEEE J. Ocean. Eng. 2008, 33, 445–450. [Google Scholar] [CrossRef]
- International Cable Protection Committee. Submarine Cables and BBNJ. Available online: https://www.un.org/depts/los/biodiversity/prepcom_files/ICC_Submarine_Cables_&_BBNJ_August_2016.pdf (accessed on 20 April 2022).
- Love, M.S.; Nishimoto, M.M.; Clark, S.; McCrea, M.; Bull, A.S. Assessing potential impacts of energized submarine power cables on crab harvests. Cont. Shelf Res. 2017, 151, 23–29. [Google Scholar] [CrossRef]
- Carter, L.; Burnett, D.; Drew, S.; Marle, G.; Hagadorn, L.; Bartlett-McNeil, D.; Irvine, N. Submarine Cables and the Oceans—Connecting the World. Available online: http://www.iscpc.org/publications/icpc-unep_report.pdf (accessed on 21 April 2022).
- Albert, L.; Deschamps, F.; Jolivet, A.; Olivier, F.; Chauvaud, L.; Chauvaud, S. A current synthesis on the effects of electric and magnetic fields emitted by submarine power cables on invertebrates. Mar. Environ. Res. 2020, 159, 104958. [Google Scholar] [CrossRef]
- Cresci, A.; Paris, C.B.; Durif, C.M.F.; Shema, S.; Bjelland, R.M.; Skiftesvik, A.B.; Browman, H.I. Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle. Sci. Adv. 2017, 3, e1602007. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, K.J.; Ernst, D.A. The Geomagnetic Sense of Crustaceans and Its Use in Orientation and Navigation. Available online: https://www.researchgate.net/profile/Kenneth-Lohmann/publication/280533822_The_geomagnetic_sense_of_crustaceans_and_its_use_in_orientation_and_navigation/links/56f2d7e408ae95e8b6cb454d/The-geomagnetic-sense-of-crustaceans-and-its-use-in-orientation-and-navigation.pdf (accessed on 16 April 2022).
- Durif, C.M.F.; Browman, H.I.; Phillips, J.B.; Skiftesvik, A.B.; Vøllestad, L.A.; Stockhausen, H.H. Magnetic Compass Orientation in the European Eel. PLoS ONE 2013, 8, e59212. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, G.C.; Hochstoeger, T.; Keays, D.A. Magnetoreception—A sense without a receptor. PLoS Biol. 2017, 15, e2003234. [Google Scholar] [CrossRef] [Green Version]
- Schluessel, V. Magnetoreception in Fishes. In The Senses: A Comprehensive Reference, 2nd ed.; Fritzsch, B., Ed.; Elsevier: Bonn, Germany, 2020; pp. 406–420. [Google Scholar]
- Andrianov, G.N.; Brown, H.R.; Ilyinsky, O.B. Responses of central neurons to electrical and magnetic stimuli of the ampullae of lorenzini in the Black Sea skate. J. Comp. Physiol. A 1974, 93, 287–299. [Google Scholar] [CrossRef]
- Akoev, G.N.; Beller, N.N.; Zadan, P.M. Some functional characteristics of the electroreceptors of electric and nonelectric fish. Fiziol. Zhurnal SSSR Im. I.M. Sechenova 1975, 61, 391–399. [Google Scholar]
- Brown, H.R.; Ilyinsky, O.B. The ampullae of Lorenzini in the magnetic field. J. Comp. Physiol. A 1978, 126, 333–341. [Google Scholar] [CrossRef]
- Hutchison, Z.L.; Gill, A.B.; Sigray, P.; He, H.; King, J.W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 2020, 10, 4219. [Google Scholar] [CrossRef] [Green Version]
- Bochert, R.; Zettler, M. Effect of electromagnetic fields on marine organisms. In Offshore Wind Energy Research Environmental Impacts; Köller, J., Köppel, J., Peters, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 223–234. [Google Scholar]
- Tricas, T.; Gill, A. Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species Final Report; Normandeau Associates: Bedford, NH, USA, 2011. [Google Scholar]
- Turner, G.M.; Rasson, J.L.; Reeves, C.V. Observation and Measurement Techniques. Treatise Geophys. 2007, 5, 93–146. [Google Scholar] [CrossRef]
- Kozhevnikov, S.V.; Ott, F.; Radu, F. Methods for Probing Magnetic Films with Neutrons. Phys. Part. Nucl. 2018, 49, 308–330. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, P.; Tang, J.; Ma, J. Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chin. J. Phys. 2020, 71, 72–84. [Google Scholar] [CrossRef]
- Çavdar, Z.B.; Yanık, C.; Yıldırım, E.E.; Trabzon, L.; Karalar, T.C. Separated terminal 2D hall sensors with improved sensitivity. Sens. Actuators A Phys. 2021, 320, 112550. [Google Scholar] [CrossRef]
- Wurz, M.C.; Prediger, M.S. Physical Sensors: Magnetic Sensors. Encycl. Sens. Biosens. 2021, 1, 97–110. [Google Scholar] [CrossRef]
- Roy, A.; Sampathkumar, P.; Kumar, P.A. Development of a very high sensitivity magnetic field sensor based on planar Hall effect. Measurement 2020, 156, 107590. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 022005. [Google Scholar] [CrossRef]
- Kondaveeti, H.K.; Kumaravelu, N.K.; Vanambathina, S.D.; Mathe, S.E.; Vappangi, S. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Comput. Sci. Rev. 2021, 40, 100364. [Google Scholar] [CrossRef]
- Khan, N.A.; Matsumoto, H.; Trescases, O. Wireless Electric Vehicle Charger with Electromagnetic Coil-Based Position Correction Using Impedance and Resonant Frequency Detection. IEEE Trans. Power Electron. 2020, 35, 7873–7883. [Google Scholar] [CrossRef]
- Sharma, S.V.; Hemalatha, G.; Ramadevi, K. Analysis of magnetic field-strength of multiple coiled MR-damper using comsol multiphysics. Mater. Today: Proc. 2022, 66, 1789–1795. [Google Scholar] [CrossRef]
- Regtien, P.; Dertien, E. Inductive and magnetic sensors. In Sensors for Mechatronics, 2nd ed.; Elsevier: Enschede, The Netherlands, 2018; pp. 145–182. [Google Scholar] [CrossRef]
- Farrok, O.; Ahmed, K.; Tahlil, A.D.; Farah, M.M.; Kiran, M.R.; Islam, R. Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies. Sustainability 2020, 12, 2178. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Pelc, R.; Fujita, R.M. Renewable energy from the ocean. Mar. Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies 2021, 14, 2121. [Google Scholar] [CrossRef]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Cueto, Y.R.; Silva, R. On the Marine Energy Resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Liu, C. Experimental investigation of pressure pulsation induced by the floor-attached vortex in an axial flow pump. Adv. Mech. Eng. 2019, 11, 1687814019838708. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, A.; Itskovich, G. Chapter One—System of Equations of the Stationary Electric and Magnetic Fields. Basic Princ. Induction Logging 2017, 1–37. [Google Scholar] [CrossRef]
- Honeywell. Linear Hall-effect Sensor ICs SS49E Datasheet; Sensing and Control Honeywell: Minneapolis, MN, USA, 2015. [Google Scholar]
- Maxim Integrated. Programmable Resolution 1-Wire Digital Thermometer DS18B20 Datasheet; Maxim Integrated Products, Inc.: San Jose, CA, USA, 2019. [Google Scholar]
- Wang, T.; Xu, J.; Molinos, J.G.; Li, C.; Hu, B.; Pan, M.; Zhang, M. A dynamic temperature difference control recording system in shallow lake mesocosm. Methodsx 2020, 7, 100930. [Google Scholar] [CrossRef]
- Brahmana, K. The Design of Data Collector to Calculate the Efficiency of DC to AC Inverter Based on ATmega328 and Micro SD as Storage Media. J. Technomater. Phys. 2020, 2, 129–138. [Google Scholar] [CrossRef]
- Cameron, N. Arduino Applied; Apress: New York, NY, USA, 2019. [Google Scholar]
- Krupčík, J.; Májek, P.; Gorovenko, R.; Blaško, J.; Kubinec, R.; Sandra, P. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2015, 1396, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta 1999, 391, 105–126. [Google Scholar] [CrossRef]
- Fontanella, R.; Accardo, D.; Moriello, R.S.L.; Angrisani, L.; De Simone, D. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter. Sensors 2018, 18, 1457. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Guo, C.; Ke, C.; Zhou, Y.; Shu, X. Temperature drift compensation of fiber strapdown inertial navigation system based on GSA-SVR. Measurement 2022, 195, 111117. [Google Scholar] [CrossRef]
- Liang, C.; Zhou, Y.; Zhang, D.; She, X.; Huang, T.; Shu, X. Research on the temperature characteristic of magnetic sensor in the magnetic drift compensation fiber-optic gyroscope. Optik 2018, 172, 91–96. [Google Scholar] [CrossRef]
- Coillot, C.; Nativel, E.; Zanca, M.; Goze-Bac, C. The magnetic field homogeneity of coils by means of the space harmonics suppression of the current density distribution. J. Sens. Sens. Syst. 2016, 5, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Bolinger, L.; Prammer, M.G.; Leigh, J.S. A multiple-frequency coil with a highly uniform B1 field. J. Magn. Reson. 1989, 81, 162–166. [Google Scholar] [CrossRef]
- Stauffer, P.; Sneed, P.; Hashemi, H.; Phillips, T. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans. Biomed. Eng. 1994, 41, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Tominaka, T. Magnetic field calculation of an infinitely long solenoid. Eur. J. Phys. 2006, 27, 1399–1408. [Google Scholar] [CrossRef]
- Bordelon, D.E.; Goldstein, R.C.; Nemkov, V.S.; Kumar, A.; Jackowski, J.K.; DeWeese, T.L.; Ivkov, R. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields with Enhanced Uniformity for Biomedical Applications. IEEE Trans. Magn. 2011, 48, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Skumiel, A.; Leszczyński, B.; Molcan, M.; Timko, M. The comparison of magnetic circuits used in magnetic hyperthermia. J. Magn. Magn. Mater. 2016, 420, 177–184. [Google Scholar] [CrossRef]
- Templin, J.D. Exact solution to the field equations in the case of an ideal, infinite solenoid. Am. J. Phys. 1995, 63, 916–920. [Google Scholar] [CrossRef]
- Sogukpinar, H.; Tali, B.; Algin, E.; Çerçi, S.; Cerci, D.S.; Engin, K.E.; Kaya, A.I. Prototype solenoid electromagnetic design and production for Turkish proton accelerator’s MDIS ion source. Balk. Phys. Lett. 2016, 24, 1–14. [Google Scholar]
- Hurtado-Velasco, R.; Gonzalez-Llorente, J. Simulation of the magnetic field generated by square shape Helmholtz coils. Appl. Math. Model. 2016, 40, 9835–9847. [Google Scholar] [CrossRef]
- Manoj, C.; Kuvshinov, A.; Maus, S.; Lühr, H. Ocean circulation generated magnetic signals. Earth Planets Space 2006, 58, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Schmid, W.A.; Lazos, R.J. Guía para Estimar la Incertidumbre de la Medición; Centro Nacional de Metrología: Queretaro, Mexico, 2000. [Google Scholar]
- Prakash, A.; Sharma, N.; Katiyar, A.K.; Dubey, S.K.; Sharma, S. Magnetic-based detection of muscular contraction for controlling hand prosthesis. Sens. Actuators A Phys. 2022, 344, 113709. [Google Scholar] [CrossRef]
Sensor/Module | Model | Operating Voltage | Output | Measuring Range |
---|---|---|---|---|
Magnetic field sensor | SS49E | 3.0 to 6.5 Vdc | Analog signal | −100 to 100 mT |
Temperature sensor | DS18B20 | 3.0 to 5.5 Vdc | Digital signal | −55 to 125 °C |
SD card module | Micro | 3.3 or 5 Vdc | Serial communication | - |
Size AWG | Magnet Wire [mm] | Magnet Wire [ins] | Maximum Load [Amps] | ||
---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | ||
16 | 1.313 | 1.349 | 0.0517 | 0.0531 | 6 |
Parameter | Symbol | Test Conditions | Minimum | Typical | Maximum | Units |
---|---|---|---|---|---|---|
Operating voltage | Vcc | Operating | 3.0 | 6.5 | V | |
Supply current | Icc | Average | 4.2 | 8.0 | mA | |
Output current | Iout | 1.0 | 1.5 | mA | ||
Quiescent output voltage | Vo | B = 0 mT | 2.25 | 2.5 | 2.75 | V |
Sensitivity | ΔVout | TA = 25 °C | 1.6 | 1.8 | 2.0 | mV/mT |
Min output voltage | B = −150 mT | 0.86 | V | |||
Max output voltage | B = 150 mT | 4.21 | V |
Parameter | Minimum | Typical | Maximum | Units |
---|---|---|---|---|
Operating voltage | 3.0 | 3.5 or 5.0 | 5.5 | V |
Supply current | 0.2 | 80 | 200 | mA |
Support card | 2.0 | Gb |
Current [Amps] | Magnetic Field [mT] | ||
---|---|---|---|
Experiment | Calculated | Simulated | |
1.03 | 2.4 | 4.33 | 3.8 |
1.85 | 5.7 | 7.81 | 6.8 |
2.78 | 9.6 | 11.7 | 10.02 |
3.65 | 13.5 | 15.39 | 13.64 |
4.53 | 17.5 | 19.08 | 17.68 |
7.51 | 28.9 | 31.64 | 29.36 |
8.71 | 36.3 | 36.67 | 34.59 |
11.14 | 47.5 | 46.89 | 43.96 |
11.89 | 50.7 | 50.08 | 47.79 |
12.59 | 53.9 | 53.04 | 51.25 |
14.00 | 59.8 | 58.96 | 55.95 |
14.65 | 62.7 | 61.69 | 58.69 |
Not in Water (mT) | In Water (mT) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sensor | Average | Maximum | Minimum | Median | Uncertainty | Average | Maximum | Minimum | Median | Uncertainty |
1 | 10.16 | 10.16 | 10.16 | 10.16 | 0.00 | 10.16 | 10.17 | 10.15 | 10.16 | 0.00 |
2 | 10.06 | 10.06 | 10.06 | 10.06 | 0.00 | 10.05 | 10.06 | 10.05 | 10.05 | 0.00 |
3 | 10.06 | 10.06 | 10.06 | 10.06 | 0.00 | 10.06 | 10.06 | 10.05 | 10.06 | 0.00 |
4 | 10.15 | 10.15 | 10.15 | 10.15 | 0.00 | 10.15 | 10.15 | 10.14 | 10.15 | 0.00 |
Site_1 (mT) | Site_2 (mT) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sensor | Average | Maximum | Minimum | Median | Uncertainty | Average | Maximum | Minimum | Median | Uncertainty |
1 | 10.16 | 10.17 | 9.96 | 10.16 | 0.00 | 10.70 | 10.70 | 10.70 | 10.70 | 0.00 |
2 | 10.05 | 10.06 | 9.86 | 10.05 | 0.00 | 10.59 | 10.59 | 10.59 | 10.59 | 0.00 |
3 | 10.06 | 10.06 | 10.04 | 10.06 | 0.00 | 10.59 | 10.59 | 10.59 | 10.59 | 0.00 |
4 | 10.15 | 10.15 | 10.08 | 10.15 | 0.00 | 10.70 | 10.70 | 10.70 | 10.70 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, V.; Silva, R.; Mendoza, E.; Canales-García, I. Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative. J. Mar. Sci. Eng. 2023, 11, 1423. https://doi.org/10.3390/jmse11071423
Luna V, Silva R, Mendoza E, Canales-García I. Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative. Journal of Marine Science and Engineering. 2023; 11(7):1423. https://doi.org/10.3390/jmse11071423
Chicago/Turabian StyleLuna, Victor, Rodolfo Silva, Edgar Mendoza, and Iza Canales-García. 2023. "Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative" Journal of Marine Science and Engineering 11, no. 7: 1423. https://doi.org/10.3390/jmse11071423
APA StyleLuna, V., Silva, R., Mendoza, E., & Canales-García, I. (2023). Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative. Journal of Marine Science and Engineering, 11(7), 1423. https://doi.org/10.3390/jmse11071423