Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan
Abstract
:1. Introduction
2. Geological Setting
3. Material and Methods
4. Results
4.1. Field Observations
4.2. Microfacies Analysis
4.2.1. Mudstone (MF-1)
4.2.2. Dolomitized Mudstone (MF-2)
4.2.3. Dolomite (MF-3)
4.2.4. Ooidal Grainstone (MF-4)
4.2.5. Peloidal Grainstone (MF-5)
4.2.6. Intraclastic Peloidal Grainstone (MF-6)
4.2.7. Peloidal Ooidal Grainstone (MF-7)
4.2.8. Peloidal Wackestone (MF-8)
4.2.9. Peloidal Packstone (MF-9)
4.3. Diagenetic Processes
4.3.1. Micritization
4.3.2. Cementation
- (a)
- The most common type of cement was the equant calcite spar, which filled pores and skeletal chambers, and veins (Figure 6c–e);
- (b)
- Granular blocky or equant calcite cement: The crystal boundaries in this cement are frequently irregular to curved, but occasionally straight. This cement resulted from aragonite leaching since it is present in both intergranular pores and molds. The crystal’s size increased from the mold’s perimeter to its center. Occasionally, crystals exhibit intense twinning;
- (c)
- Coarse, blocky calcite cement is the most prevalent type of cement in the Samana Suk Fm. Clear, coarse to very coarse calcite cement (Figure 6e). In thin sections, it appeared to have straight boundaries on one side and curved boundaries on the other. It completely fills all accessible intergranular pores. Sometimes, thin isopachous cement is used to line molds, and the remaining space is filled with a single calcite crystal;
- (d)
- This cement was evident in compacted grainstones with syntaxial overgrowths. Syntaxial overgrowth (Figure 6f) is difficult to distinguish from poikilotopic cement and frequently replaces bioclasts;
- (e)
- Poikilotopic cement: This form of cement in the Samana Suk Formation is a highly coarse-grained, poikilotopic (Figure 7a), clear, blocky, calcite cement that fills pore spaces surrounding multiple grains. It has a diameter of several millimeters;
- (f)
- Ferroan dolomite cement; molds and intergranular pores include dark brown to reddish brown, anhedral to subhedral, coarsely crystalline ferroan and non-ferroan dolomite and twin calcite (Figure 7b–d).
4.3.3. Dissolution
4.3.4. Mechanical and Chemical Compaction
4.3.5. Neomorphism
4.3.6. Dolomitization
4.4. Sequence Stratigraphy
4.4.1. Depositional Sequence 1
4.4.2. Depositional Sequence 2
4.4.3. Depositional Sequence 3
4.4.4. Depositional Sequence 4
4.4.5. Depositional Sequence 5
5. Discussion
5.1. Depositional Environment
5.2. Diagenetic History and Sequence Stratigraphy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucia, F.J. Petrophysical rock properties. In Carbonate Reservoir Characterization: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–27. [Google Scholar]
- Ahr, W.M. Geology of Carbonate Reservoirs: The Identification, Description and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Beigi, M.; Jafarian, A.; Javanbakht, M.; Wanas, H.A.; Mattern, F.; Tabatabaei, A. Facies analysis, diagenesis and sequence stratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impacts on reservoir quality (Salman Oil Field, Persian Gulf, Iran). J. Afr. Earth Sci. 2017, 129, 179–194. [Google Scholar] [CrossRef]
- Gaupp, R.; Matter, A.; Platt, J.; Ramseyer, K.; Walzebuck, J. Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. AAPG Bull. 1993, 77, 1111–1128. [Google Scholar]
- Mazzullo, S.J. Diagenesis in a sequence-stratigraphic setting: Porosity evolution in periplatform carbonate reservoirs, Permian Basin, Texas and New Mexico. J. Pet. Sci. Eng. 1994, 11, 311–322. [Google Scholar] [CrossRef]
- Hiatt, E.E.; Kyser, T.K. Links between depositional and diagenetic processes in basin analysis: Porosity and permeability evolution in sedimentary rocks. In Fluids Basin Evolution; Short Course; Mineralogical Association of Canada: Québec City, QC, Canada, 2000; Volume 28, pp. 63–92. [Google Scholar]
- Janjuhah, H.T.; Salim, A.M.A.; Ghosh, D.P.; Wahid, A. Diagenetic process and their effect on reservoir quality in Miocene carbonate reservoir, Offshore, Sarawak, Malaysia. In ICIPEG 2016, Proceedings of the International Conference on Integrated Petroleum Engineering and Geosciences, Kuala Lumpur, Malaysia, 15–17 August 2016; Springer: Berlin/Heidelberg, Germany, 2017; pp. 545–558. [Google Scholar]
- Posamentier, H.W.; Vail, P.R. Eustatic controls on clastic deposition II—Sequence and systems tract models. In Sea-Level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., Kendall, C.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1988. [Google Scholar]
- Van Wagoner, J.C.; Mitchum, R.M.; Campion, K.M.; Rahmanian, V.D. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies; American Association of Petroleum Geologists: Tulsa, OK, USA, 1990. [Google Scholar]
- Emery, D.; Myers, K.J. Sequence Stratigraphy; Black Ltd.: Oxford, UK, 1996. [Google Scholar]
- Posamentier, H.W.; Allen, G.P. Siliciclastic Sequence Stratigraphy—Concepts and Applications; SEPM Concepts in Sedimentology and Paleontology; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1999; Volume 7, 210p. [Google Scholar]
- Rahimpour-Bonab, H.; Mehrabi, H.; Enayati-Bidgoli, A.H.; Omidvar, M. Coupled imprints of tropical climate and recurring emergence on reservoir evolution of a mid Cretaceous carbonate ramp, Zagros Basin, southwest Iran. Cretac. Res. 2012, 37, 15–34. [Google Scholar] [CrossRef]
- Taghavi, A.A.; Mørk, A.; Emadi, M.A. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Pet. Geosci. 2006, 12, 115–126. [Google Scholar] [CrossRef]
- Morad, S.; Ketzer, J.M.; De Ros, L.F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology 2000, 47, 95–120. [Google Scholar] [CrossRef]
- Tucker, M.E. Carbonate diagenesis and sequence stratigraphy. In Sedimentology Review 1; Wright, V.P., Ed.; Blackwell Scientific Publications: Oxford, UK, 1993; pp. 51–72. [Google Scholar]
- South, D.L.; Talbot, M.R. The sequence stratigraphic framework of carbonate diagenesis within transgressive fan-delta deposits: Sant Llorenç del Munt fan-delta complex, SE Ebro Basin, NE Spain. Sediment. Geol. 2000, 138, 179–198. [Google Scholar] [CrossRef]
- Ketzer, J.M.; Holz, M.; Morad, S.; Al-Aasm, I.S. Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: Evidence from the Rio Bonito Formation (early Permian), southern Brazil. Sedimentology 2003, 50, 855–877. [Google Scholar] [CrossRef]
- Moss, S.; Tucker, M.E. Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone Formation of SE France): Near-surface and shallow-burial diagenesis. Sedimentology 1995, 42, 853–874. [Google Scholar] [CrossRef]
- Booler, J.; Tucker, M.E. Distribution and geometry of facies and early diagenesis: The key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees. Sediment. Geol. 2002, 146, 225–247. [Google Scholar] [CrossRef]
- Morad, S.; Al-Aasm, I.S.; Nader, F.H.; Ceriani, A.; Gasparrini, M.; Mansurbeg, H. Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi oilfield, United Arab Emirates. GeoArabia 2012, 17, 17–56. [Google Scholar] [CrossRef]
- Janjuhah, H.T.; Alansari, A.; Ghosh, D.P.; Bashir, Y. New approach towards the classification of microporosity in Miocene carbonate rocks, Central Luconia, offshore Sarawak, Malaysia. J. Nat. Gas Geosci. 2018, 3, 119–133. [Google Scholar] [CrossRef]
- Shah, M.M.; Rahim, H.U.; Hassan, A.; Mustafa, M.R.; Ahmad, I. Facies control on selective dolomitization and its impact on reservoir heterogeneities in the Samana Suk Formation (middle Jurassic), Southern Hazara Basin (NW Himalaya, Pakistan): An outcrop analogue. Geosci. J. 2020, 24, 295–314. [Google Scholar] [CrossRef]
- Rahim, H.-u.; Qamar, S.; Shah, M.M.; Corbella, M.; Martín-Martín, J.D.; Janjuhah, H.T.; Navarro-Ciurana, D.; Lianou, V.; Kontakiotis, G. Processes Associated with Multiphase Dolomitization and Other Related Diagenetic Events in the Jurassic Samana Suk Formation, Himalayan Foreland Basin, NW Pakistan. Minerals 2022, 12, 1320. [Google Scholar] [CrossRef]
- Rahim, H.U.; Shah, M.M.; Corbella, M.; Navarro-Ciurana, D. Diagenetic evolution and associated dolomitization events in the middle Jurassic Samana Suk Formation, Lesser Himalayan Hill Ranges, NW Pakistan. Carbonates Evaporites 2020, 35, 101. [Google Scholar] [CrossRef]
- Yeats, R.S.; Hussain, A. Timing of structural events in the Himalayan foothills of northwestern Pakistan. Geol. Soc. Am. Bull. 1987, 99, 161–176. [Google Scholar] [CrossRef]
- DiPietro, J.A.; Pogue, K.R. Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics 2004, 23, TC5001. [Google Scholar] [CrossRef]
- Shah, M.T.; Moon, C.J. Mineralogy, geochemistry and genesis of the ferromanganese ores from Hazara area, NW Himalayas, northern Pakistan. J. Asian Earth Sci. 2004, 23, 1–15. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seno, T.; Yamamoto, H.; Khan, T. Timing of collision of the Kohistan–Ladakh Arc with India and Asia: Debate. Isl. Arc 2011, 20, 308–328. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Jadoon, I.A.K.; Haneef, M.; Baral, U.; Cai, F.; Wang, H.; Yue, Y. Tectonic implications of detrital zircon ages from lesser Himalayan Mesozoic-Cenozoic strata, Pakistan. Geochem. Geophys. Geosystems 2018, 19, 1636–1659. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Arif, M.; Basit, A.; Ahmad, S.; Janjuhah, H.T.; Kontakiotis, G. Sedimentological Controls on the Reservoir Characteristics of the Mid-Triassic Tredian Formation in the Salt and Trans-Indus Surghar Ranges, Pakistan: Integration of Outcrop, Petrographic, and SEM Analyses. J. Mar. Sci. Eng. 2023, 11, 1019. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Chatterjee, S.; Goswami, A.; Scotese, C.R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 2013, 23, 238–267. [Google Scholar] [CrossRef]
- Han, Z.; Hu, X.; Li, J.; Garzanti, E. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 456, 1–20. [Google Scholar] [CrossRef]
- Shah, S.M.I. Stratigraphy of Pakistan (memoirs of the geological survey of Pakistan). Geol. Surv. Pak. 2009, 22, 381. [Google Scholar]
- Mehmood, M.; Naseem, A.A.; Saleem, M.; Rehman, J.u.; Kontakiotis, G.; Janjuhah, H.T.; Khan, E.U.; Antonarakou, A.; Khan, I.; Rehman, A.u. Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan. J. Mar. Sci. Eng. 2023, 11, 726. [Google Scholar] [CrossRef]
- Ahsan, N.; Chaudhry, M.N. Geology of Hettangian to middle Eocene rocks of Hazara and Kashmir basins, Northwest lesser Himalayas, Pakistan. Geol. Bull. Panjab Univ. 2008, 43, 131–152. [Google Scholar]
- Hussain, H.S.; Fayaz, M.; Haneef, M.; Hanif, M.; Jan, I.U.; Gul, B. Microfacies and diagenetic-fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. J. Himal. Earth Sci. 2013, 46, 79. [Google Scholar]
- Ali, S.K.; Lashari, R.A.; Sahito, A.G.; Kontakiotis, G.; Janjuhah, H.T.; Mughal, M.S.; Bilal, A.; Mehmood, T.; Majeed, K.U. Sedimentological and Petrographical Characterization of the Cambrian Abbottabad Formation in Kamsar Section, Muzaffarabad Area: Implications for Proto-Tethys Ocean Evolution. J. Mar. Sci. Eng. 2023, 11, 526. [Google Scholar] [CrossRef]
- Bilal, A.; Yang, R.; Janjuhah, H.T.; Mughal, M.S.; Li, Y.; Kontakiotis, G.; Lenhardt, N. Microfacies analysis of the Palaeocene Lockhart limestone on the eastern margin of the Upper Indus Basin (Pakistan): Implications for the depositional environment and reservoir characteristics. Depos. Rec. 2023, 9, 152–173. [Google Scholar] [CrossRef]
- Basharat, M.; Qasim, M.; Shafique, M.; Hameed, N.; Riaz, M.T.; Khan, M.R. Regolith thickness modeling using a GIS approach for landslide distribution analysis, NW Himalayas. J. Mt. Sci. 2018, 15, 2466–2479. [Google Scholar] [CrossRef]
- Garzanti, E. Himalayan ironstones, “superplumes”, and the breakup of Gondwana. Geology 1993, 21, 105–108. [Google Scholar] [CrossRef]
- Bilal, A.; Yang, R.; Mughal, M.S.; Janjuhah, H.T.; Zaheer, M.; Kontakiotis, G. Sedimentology and Diagenesis of the Early–Middle Eocene Carbonate Deposits of the Ceno-Tethys Ocean. J. Mar. Sci. Eng. 2022, 10, 1794. [Google Scholar] [CrossRef]
- Jan, M.Q.; Windley, B.F.; Khan, A. The Waziristan ophiolite, Pakistan; general geology and chemistry of chromite and associated phases. Econ. Geol. 1985, 80, 294–306. [Google Scholar] [CrossRef]
- Hanif, M.; Imraz, M.; Ali, F.; Haneef, M.; Saboor, A.; Iqbal, S.; Ahmad, S. The inner ramp facies of the Thanetian Lockhart Formation, western Salt Range, Indus Basin, Pakistan. Arab. J. Geosci. 2014, 7, 4911–4926. [Google Scholar] [CrossRef]
- Ahmad, I.; Shah, M.M.; Janjuhah, H.T.; Trave, A.; Antonarakou, A.; Kontakiotis, G. Multiphase Diagenetic Processes and Their Impact on Reservoir Character of the Late Triassic (Rhaetian) Kingriali Formation, Upper Indus Basin, Pakistan. Minerals 2022, 12, 1049. [Google Scholar] [CrossRef]
- Shahzad, A.; Munir, M.u.H.; Adatte, T.; Riaz, M.T.; Basharat, M.; Ahmed, K.S.; Sarfraz, Y.; Khan, J.; Mughal, M.S. Multi-proxy approach of the stratigraphy, geochemistry, and sedimentology of Eocene Margalla Hill Limestone: Case study from Muzaffarabad area, Sub-Himalayas, Pakistan. Geol. J. 2022, 57, 186–207. [Google Scholar] [CrossRef]
- Shahzad, A.; Khan, J.; Hanif, M.; Baumgartner-Mora, C.; Sarfraz, Y.; Ahmed, K.S.; Riaz, M.T.; Baumgartner, P.O.; ul Hassan Munir, M.; Wazir, A. Eocene nannofossils and paleoenvironmental reconstruction of the Kuldana Formation in Yadgar area, Muzaffarabad, northern Pakistan. Palaeoworld 2023. [Google Scholar] [CrossRef]
- Critelli, S.; Garzanti, E. Provenance of the lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment. Geol. 1994, 89, 265–284. [Google Scholar] [CrossRef]
- Ali, S.K.; Janjuhah, H.T.; Shahzad, S.M.; Kontakiotis, G.; Saleem, M.H.; Khan, U.; Zarkogiannis, S.D.; Makri, P.; Antonarakou, A. Depositional Sedimentary Facies, Stratigraphic Control, Paleoecological Constraints, and Paleogeographic Reconstruction of Late Permian Chhidru Formation (Western Salt Range, Pakistan). J. Mar. Sci. Eng. 2021, 9, 1372. [Google Scholar] [CrossRef]
- Dickson, J.A.D. A modified staining technique for carbonates in thin section. Nature 1965, 205, 587. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional textures. In Classification of Carbonate Rocks—A Symposium; AAPG Datapages Inc.: Tulsa, OK, USA, 1962. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A late Devonian reef tract on northeastern Banks Island, NWT. Bull. Can. Pet. Geol. 1971, 19, 730–781. [Google Scholar]
- Wilson, J.L. The lower carboniferous Waulsortian facies. In Carbonate Facies in Geologic History; Springer: Berlin/Heidelberg, Germany, 1975; pp. 148–168. [Google Scholar]
- Buxton, M.W.N.; Pedley, H.M. Short Paper: A standardized model for Tethyan Tertiary carbonate ramps. J. Geol. Soc. 1989, 146, 746–748. [Google Scholar] [CrossRef]
- Flügel, E.; Munnecke, A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2010; Volume 976. [Google Scholar]
- Plumley, W.J.; Risley, G.A.; Graves Jr, R.W.; Kaley, M.E. Energy index for limestone interpretation and classification. In Classification of Carbonate Rocks—A Symposium; AAPG Datapages Inc.: Tulsa, OK, USA, 1962. [Google Scholar]
- Janjuhah, H.T.; Alansari, A. Offshore carbonate facies characterization and reservoir quality of Miocene rocks in the southern margin of South China Sea. Acta Geol. Sin. Engl. Ed. 2020, 94, 1547–1561. [Google Scholar] [CrossRef]
- Lee, E.Y.; Kominz, M.; Reuning, L.; Gallagher, S.J.; Takayanagi, H.; Ishiwa, T.; Knierzinger, W.; Wagreich, M. Quantitative compaction trends of Miocene to Holocene carbonates off the west coast of Australia. Aust. J. Earth Sci. 2021, 68, 1149–1161. [Google Scholar] [CrossRef]
- Janjuhah, H.T.; Alansari, A.; Santha, P.R. Interrelationship between facies association, diagenetic alteration and reservoir properties evolution in the Middle Miocene carbonate build up, Central Luconia, Offshore Sarawak, Malaysia. Arab. J. Sci. Eng. 2019, 44, 341–356. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Sea-Level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., Kendall, C.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1988. [Google Scholar]
- Shah, M.M.; Ahmed, I. Diagenetic Studies and Its Implications on the Reservoir Character of the Anisian-Norian (Triassic) Kingriali Formation, Salt Range (Pakistan). In Proceedings of the AAPG/SEG International Conference & Exhibition, Cancun, Mexico, 6–9 September 2016. [Google Scholar]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Ngia, N.R.; Hu, M.; Gao, D. Hydrocarbon reservoir development in reef and shoal complexes of the Lower Ordovician carbonate successions in the Tazhong Uplift in central Tarim basin, NW China: Constraints from microfacies characteristics and sequence stratigraphy. J. Pet. Explor. Prod. Technol. 2020, 10, 2693–2720. [Google Scholar] [CrossRef]
- Wadood, B.; Khan, S.; Li, H.; Liu, Y.; Ahmad, S.; Jiao, X. Sequence Stratigraphic Framework of the Jurassic Samana Suk Carbonate Formation, North Pakistan: Implications for Reservoir Potential. Arab. J. Sci. Eng. 2021, 46, 525–542. [Google Scholar] [CrossRef]
- Karami-Movahed, F.; Aleali, M.; Ghazanfari, P. Facies Analysis, Depositional Environment and Diagenetic Features of the Qom Formation in the Saran Semnan, Central Iran. Open J. Geol. 2016, 6, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Bathurst, R.G.C. Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol. J. 1966, 5, 15–32. [Google Scholar] [CrossRef]
- Kobluk, D.R.; Risk, M.J. Micritization and carbonate-grain binding by endolithic algae. AAPG Bull. 1977, 61, 1069–1082. [Google Scholar]
- Smosna, R.; Koehler, B. Tidal Origin of a Mississippian Oolite on the West Virginia Dome: Chapter 11. In Mississippian Oolites and Modern Analogs; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993. [Google Scholar]
- Perry, C.T. Grain susceptibility to the effects of microboring: Implications for the preservation of skeletal carbonates. Sedimentology 1998, 45, 39–51. [Google Scholar] [CrossRef]
- Janjuhah, H.T.; Kontakiotis, G.; Wahid, A.; Khan, D.M.; Zarkogiannis, S.D.; Antonarakou, A. Integrated porosity classification and quantification scheme for enhanced carbonate reservoir quality: Implications from the miocene malaysian carbonates. J. Mar. Sci. Eng. 2021, 9, 1410. [Google Scholar] [CrossRef]
- Janjuhah, H.T.; Salim, A.M.A.; Alansari, A.; Ghosh, D.P. Presence of microporosity in Miocene carbonate platform, Central Luconia, offshore Sarawak, Malaysia. Arab. J. Geosci. 2018, 11, 204. [Google Scholar] [CrossRef]
- Bathurst, R.G.C. Carbonate Sediments and Their Diagenesis; Elsevier: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Halley, R.B.; Scholle, P.A. Radiaxial fibrous calcite as early-burial, open-system cement: Isotopic evidence from Permian of China. AAPG Bull. 1985, 69, 261–262. [Google Scholar]
- Moore, C.H. Diagenetic environments of porosity modification and tools for their recognition in the geologic record. Carbonate Reserv. Porosity Evol. Diagenesis A Seq. Stratigr. Framew. Dev. Sedimentol. 2001, 55, 61–88. [Google Scholar]
- Salah, M.K.; Janjuhah, H.; Sanjuan, J.; Maalouf, E. Impact of diagenesis and pore aspects on the petrophysical and elastic properties of carbonate rocks from southern Lebanon. Bull. Eng. Geol. Environ. 2023, 82, 67. [Google Scholar] [CrossRef]
- Hitchon, B.; Friedman, I. Geochemistry and origin of formation waters in the western Canada sedimentary basin—I. Stable isotopes of hydrogen and oxygen. Geochim. Cosmochim. Acta 1969, 33, 1321–1349. [Google Scholar] [CrossRef]
- Jones, B.; Hunter, I.G. Messinian (late Miocene) karst on Grand Cayman, British West Indies; an example of an erosional sequence boundary. J. Sediment. Res. 1994, 64, 531–541. [Google Scholar]
- Evans, M.W.; Snyder, S.W.; Hine, A.C. High-resolution seismic expression of karst evolution within the Upper Floridan aquifer system; Crooked Lake, Polk County, Florida. J. Sediment. Res. 1994, 64, 232–244. [Google Scholar]
- Janjuhah, H.T.; Sanjuan, J.; Alqudah, M.; Salah, M.K. Biostratigraphy, Depositional and Diagenetic Processes in Carbonate Rocks from Southern Lebanon: Impact on Porosity and Permeability. Acta Geol. Sin. Engl. Ed. 2021, 95, 1668–1683. [Google Scholar] [CrossRef]
- Wu, G.; Xie, E.; Zhang, Y.; Qing, H.; Luo, X.; Sun, C. Structural Diagenesis in Carbonate Rocks as Identified in Fault Damage Zones in the Northern Tarim Basin, NW China. Minerals 2019, 9, 360. [Google Scholar] [CrossRef] [Green Version]
Age | Formation | Description | ||
---|---|---|---|---|
Cenozoic | Miocene | Murree Unconformity | Sandstone, siltstone, clay | |
Eocene | Kuldana | Shale, gypsum with interbeds of limestone | ||
Chorgali | Limestone with interlayers of shale/marl | |||
Margala-Hill Limestone | Nodular limestone with interbedded shale/marl | |||
Paleocene | Late | Patala | Marly shale with few thin limestone beds | |
Lockhart Limestone | Nodular limestone with occasional marl/shale layers | |||
Early | Hangu Unconformity | Siltstone, sandstone, shale, bituminous shale | ||
Mesozoic | Cretaceous | Late | Kawagarh | Micritic limestone with shale interbeds |
Early | Lumshiwal | Sand, siltstone with shale interlayer | ||
Chichali | Gluconitic shale, sandstone | |||
Jurassic | Samana Suk | Limestone with intra-formational conglomerate | ||
Datta Unconformity | Calcareous sandstone with fire clay and shale | |||
Paleozoic | Cambrian | Abbottabad Unconformity | Dolomites with sandstone, shale, and conglomerate | |
Pre-Cambrian | Hazara | Shale, phyllite, and shale with minor limestone and graphite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qamar, S.; Shah, M.M.; Janjuhah, H.T.; Kontakiotis, G.; Shahzad, A.; Besiou, E. Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan. J. Mar. Sci. Eng. 2023, 11, 1230. https://doi.org/10.3390/jmse11061230
Qamar S, Shah MM, Janjuhah HT, Kontakiotis G, Shahzad A, Besiou E. Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan. Journal of Marine Science and Engineering. 2023; 11(6):1230. https://doi.org/10.3390/jmse11061230
Chicago/Turabian StyleQamar, Shazia, Mumtaz Muhammad Shah, Hammad Tariq Janjuhah, George Kontakiotis, Amir Shahzad, and Evangelia Besiou. 2023. "Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan" Journal of Marine Science and Engineering 11, no. 6: 1230. https://doi.org/10.3390/jmse11061230
APA StyleQamar, S., Shah, M. M., Janjuhah, H. T., Kontakiotis, G., Shahzad, A., & Besiou, E. (2023). Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan. Journal of Marine Science and Engineering, 11(6), 1230. https://doi.org/10.3390/jmse11061230