Time-Optimal Trajectory Design for Heading Motion of the Underwater Vehicle
Abstract
:1. Introduction
2. Dynamics of an Underwater Vehicle
2.1. Assumptions
- The underwater vehicle has neutral buoyancy, and its body-fixed coordinate system is centered at the center of mass;
- The underwater vehicle is a rigid body with no bending or geometrical deformations;
- The underwater vehicle is deeply submerged in a homogeneous, unbounded fluid, far from the free surface and without surface effects;
- The underwater vehicle has three planes of symmetry;
- The propeller provides constant thrust, and its torque is negligible and ignored;
- We mainly study the heading motion of the underwater vehicle in the horizontal plane and simplify the model to a degree of freedom model by ignoring the roll, pitch, and heave motions of the underwater vehicle.
2.2. Heading Motion of Underwater Vehicle
3. Time-Optimal Solution of the Second-Order Differential Equation
3.1. Acceleration Period ():
3.2. Constant Velocity Period ():
3.3. Deceleration Period ():
3.4. Closed-Form Solution for TOT Trajectory
4. Super-Twisting Sliding Mode Control
5. Computer Simulation
- Simulation 1: TOT trajectory with tracking SMC controller without uncertainties.
- Simulation 2: TOT trajectory with tracking SMC controller under parameter uncertainties and external disturbances ().
- Simulation 3: TOT trajectory with tracking ST-SMC controller under higher parameter uncertainties and external disturbances ().
5.1. Simulation 1
5.2. Simulation 2
5.3. Simulation 3
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Solution of Heading Dynamics in the Positive Domain
Appendix A.1. Acceleration Period:
Appendix A.2. Constant Velocity Period:
Appendix A.3. Deceleration Period:
Appendix A.3.1. If
Appendix A.3.2. If
Appendix B. Solution of Heading Dynamics in the Negative Domain
Appendix B.1. Acceleration Period:
Appendix B.2. Constant Velocity Period:
Appendix B.3. Deceleration Period:
Appendix B.3.1. If
Appendix B.3.2. If
References
- Vu, M.T.; Choi, H.S.; Thieu, Q.M.N.; Nguyen, N.D.; Lee, S.D.; Le, T.H.; Sur, J. Docking assessment algorithm for autonomous underwater vehicles. Appl. Ocean Res. 2020, 100, 102180. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.-K.; Ji, D.-H.; Tran, N.-H.; Vu, M.T.; Choi, H.-S. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle. Sensors 2020, 20, 2633. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.I.; Choi, H.S.; Vu, M.T.; Nguyen, N.D.; Ji, D.H.; Kim, J.Y. Experimental study of dynamic stability of underwater vehicle-manipulator system using zero moment point. J. Mar. Sci. Technol. Taiwan 2017, 25, 767–774. [Google Scholar]
- Vu, M.T.; Thanh, H.L.N.N.; Huynh, T.T.; Do, Q.T.; Do, T.D.; Hoang, Q.D.; Le, T.H. Station-Keeping Control of a Hovering Over-Actuated Autonomous Underwater Vehicle Under Ocean Current Effects and Model Uncertainties in Horizontal Plane. IEEE Access 2021, 09, 6855–6867. [Google Scholar] [CrossRef]
- Deutsch, C.; Kuttenkeuler, J.; Melin, T. Glider performance analysis and intermediate-fidelity modelling of underwater vehicles. Ocean Eng. 2020, 210, 107567. [Google Scholar] [CrossRef]
- Jeong, S.K.; Choi, H.S.; Ji, D.H.; Vu, M.T.; Kim, J.Y.; Hong, S.M.; Cho, H.J. A study on an accurate underwater location of hybrid underwater gliders using machine learning. J. Mar. Sci. Technol.-Taiwan 2020, 28, 518–527. [Google Scholar]
- Vu, M.T.; Choi, H.S.; Nguyen, N.D.; Kim, S.K. Analytical design of an underwater construction robot on the slope with an up-cutting mode operation of a cutter bar. Appl. Ocean Res. 2019, 86, 289–309. [Google Scholar] [CrossRef]
- Chen, M.Z.; Guo, S.X.; Zhu, D.Q. Motion planning for an under-actuated autonomous underwater vehicle based on fast marching nonlinear model-predictive quantum particle swarm optimization. Ocean Eng. 2023, 268, 113391. [Google Scholar] [CrossRef]
- Vu, M.T.; Choi, H.S.; Ji, D.H.; Jeong, S.K.; Kim, J.Y. A study on an up-milling rock crushing tool operation of an underwater tracked vehicle. Proc. Inst. Mech. Eng. Part M-J. Eng. Marit. Environ. 2019, 233, 283–300. [Google Scholar] [CrossRef]
- Li, J.J.; Xiang, X.B.; Dong, D.L.; Yang, S.L. Prescribed time observer based trajectory tracking control of autonomous underwater vehicle with tracking error constraints. Ocean Eng. 2023, 274, 114018. [Google Scholar] [CrossRef]
- Vu, M.T.; Van, M.; Bui, D.H.P.; Do, Q.T.; Huynh, T.T.; Lee, S.D.; Choi, H.S. Study on Dynamic Behavior of Unmanned Surface Vehicle-Linked- Unmanned Underwater Vehicle System for Underwater Exploration. Sensors 2020, 20, 1329. [Google Scholar] [CrossRef]
- Zhang, B.B.; Ji, D.; Liu, S.; Zhu, S.K.; Xu, W. Autonomous Underwater Vehicle navigation: A review. Ocean Eng. 2023, 273, 113861. [Google Scholar] [CrossRef]
- Fraga, S.L.; Sousa, J.B.; Pereira, F.L. Trajectory generation for a remotely operated vehicle. In Proceedings of the IEEE European Control Conference, Cambridge, UK, 1–4 September 2003. [Google Scholar]
- Chyba, M.; Leonard, N.E.; Sontag, E.D. Time-Optimal Control for Underwater Vehicles. IFAC Proc. Vol. 2000, 33, 117–122. [Google Scholar] [CrossRef]
- Chyba, M.; Haberkorn, T.; Smith, R.N.; Choi, S.K. Design and implementation of time efficient trajectories for autonomous underwater vehicles. Ocean Eng. 2008, 35, 63–76. [Google Scholar] [CrossRef]
- Rhoads, B.; Mezić, I.; Poje, A.C. Minimum time heading control of underpowered vehicles in time-varying ocean currents. Ocean Eng. 2013, 66, 12–31. [Google Scholar] [CrossRef]
- Loc, M.B.; Choi, H.S.; You, S.S.; Huy, T.N. Time optimal trajectory design for unmanned underwater vehicle. Ocean Eng. 2014, 89, 69–81. [Google Scholar] [CrossRef]
- Vu, M.T.; Choi, H.S.; Kang, J.I.; Ji, D.H.; Joong, H. Energy efficient trajectory design for the underwater vehicle with bounded inputs using the global optimal sliding mode control. J. Mar. Sci. Technol.-Taiwan 2017, 25, 705–714. [Google Scholar]
- Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A.; Campos, E. Saturation based nonlinear PID control for underwater vehicles: Design, stability analysis and experiments. Mechatronics 2019, 61, 96–105. [Google Scholar] [CrossRef]
- Vu, M.T.; Le, T.H.; Thanh, H.L.N.N.; Huynh, T.T.; Van, M.; Hoang, Q.D.; Do, Q.T. Robust Position Control of an Over-actuated Underwater Vehicle under Model Uncertainties and Ocean Current Effects Using Dynamic Sliding Mode Surface and Optimal Allocation Control. Sensors 2021, 21, 747. [Google Scholar] [CrossRef]
- Antonelli, G.; Fossen, T.I.; Yoerger, D.R. Underwater Robotics; Springer Handbook of Robotics: Berlin/Heidelberg, Germany, 2008; pp. 987–1008. [Google Scholar]
- Vu, M.T.; Jeong, S.K.; Choi, H.S.; Oh, J.Y.; Ji, D.H. Study on down-cutting ladder trencher of an underwater construction robot for seabed application. Appl. Ocean Res. 2018, 71, 90–104. [Google Scholar] [CrossRef]
- Farrell, J.A.; Pang, S.; Li, W.; Arrieta, R.M. Biologically inspired chemical plume tracing demonstrated on an autonomous underwater vehicle. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, Hague, The Netherlands, 10–13 October 2004. [Google Scholar]
- Yildiz, Ö.; Gökalp, R.B.; Yilmaz, A.E. A review on motion control of the underwater vehicles. In Proceedings of the 2009 International Conference on Electrical and Electronics Engineering-ELECO 2009, Bursa, Turkey, 5–8 November 2009. [Google Scholar]
- Jun, S.W.; Lee, H.J. Design of TS fuzzy-model-based controller for depth control of autonomous underwater vehicles with parametric uncertainties. In Proceedings of the 2011 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Republic of Korea, 26–29 October 2011. [Google Scholar]
- Dahmani, H.; Chadli, M.; Rabhi, A.; El Hajjaji, A. Road curvature estimation for vehicle lane departure detection using a robust Takagi–Sugeno fuzzy observer. Veh. Syst. Dyn. 2013, 51, 581–599. [Google Scholar] [CrossRef]
- Mobayen, S.; Bayat, F.; Din, S.U.; Vu, M.T. Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems. ISA Trans. 2023, 134, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Alattas, K.A.; Vu, M.T.; Mofid, O.; ElSousy, F.F.M.; Fekih, A.; Mobayen, S. Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints. Mathematics 2022, 10, 1659. [Google Scholar] [CrossRef]
- Medagoda, L.; Williams, S.B. Model predictive control of an autonomous underwater vehicle in an in situ estimated water current profile. In Proceedings of the 2012 Oceans-Yeosu, Yeosu, Republic of Korea, 21–24 May 2012. [Google Scholar]
- Steenson, L.V. Experimentally Verified Model Predictive Control of a Hover-Capable AUV. Ph.D. Thesis, University of Southampton, Southampton, UK, 2013. [Google Scholar]
- Kumar, N.; Panwar, V.; Sukavanam, N.; Sharma, S.P.; Borm, J.-H. Neural network-based nonlinear tracking control of kinematically redundant robot manipulators. Math. Comput. Model 2011, 53, 1889–1901. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Bartolini, G.; Orani, N.; Pisano, A.; Punta, E.; Usai, E. A combined first-/second-order sliding-mode technique in the control of a jet-propelled vehicle. Int. J. Robust Nonlinear Control 2008, 18, 570–585. [Google Scholar] [CrossRef]
- Slotine, J.J.; Li, W. Applied Nonlinear Control; Prentice Hall: Hoboken, NJ, USA, 1991. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.-D.; Vu, M.T.; Nguyen, P.; Huang, J.; Jung, D.-W.; Cho, H.; Anh, P.H.N.; Choi, H.-S. Time-Optimal Trajectory Design for Heading Motion of the Underwater Vehicle. J. Mar. Sci. Eng. 2023, 11, 1099. https://doi.org/10.3390/jmse11061099
Nguyen N-D, Vu MT, Nguyen P, Huang J, Jung D-W, Cho H, Anh PHN, Choi H-S. Time-Optimal Trajectory Design for Heading Motion of the Underwater Vehicle. Journal of Marine Science and Engineering. 2023; 11(6):1099. https://doi.org/10.3390/jmse11061099
Chicago/Turabian StyleNguyen, Ngoc-Duc, Mai The Vu, Phi Nguyen, Jiafeng Huang, Dong-Wook Jung, Hyunjoon Cho, Phan Huy Nam Anh, and Hyeung-Sik Choi. 2023. "Time-Optimal Trajectory Design for Heading Motion of the Underwater Vehicle" Journal of Marine Science and Engineering 11, no. 6: 1099. https://doi.org/10.3390/jmse11061099
APA StyleNguyen, N.-D., Vu, M. T., Nguyen, P., Huang, J., Jung, D.-W., Cho, H., Anh, P. H. N., & Choi, H.-S. (2023). Time-Optimal Trajectory Design for Heading Motion of the Underwater Vehicle. Journal of Marine Science and Engineering, 11(6), 1099. https://doi.org/10.3390/jmse11061099