Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan
Abstract
:1. Introduction
2. Numerical Model
2.1. Fluid Solver
2.2. Rheological Model
3. Model Validation
4. Monopile Wind Turbine
5. Tripod and Jack-Up (4-Leg) Wind Turbines
5.1. Case 5-1: Tripod Wind Turbine under Random Waves
5.2. Case 5-2: Tripod Wind Turbine under Random Waves and Current
5.3. Case 5-3: Jack-Up (4-Leg) Wind Turbine under Random Waves
5.4. Case 5-4: Jack-Up (4-Leg) Wind Turbine under Random Wave—Current
6. Discussions
7. Conclusions
- Waves, including regular and irregular waves, do not increase the scour depth compared with currents only.
- The backfilling phenomenon of the scour hole explains the disappearance and reappearance of the local scour in the wave conditions.
- In the case of random wave–current coupling, the results present a signal of scour evolution. However, the scour depth is shallow at .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.H.; Yang, R.Y.; Hsiao, S.C.; Hwung, H.H. Experimental study of scour around monopile and jacket-type offshore wind turbine foundations. J. Mar. Sci. Technol. 2019, 27, 91–100. [Google Scholar] [CrossRef]
- Chang, P.C.; Yang, R.Y.; Lai, C.M. Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan. Energies 2015, 8, 1685–1700. [Google Scholar] [CrossRef]
- Fang, H.F. Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago. Renew. Energy 2014, 67, 237–241. [Google Scholar] [CrossRef]
- Igoe, D.; Gavin, K.; O’Kelly, B. An investigation into the use of push-in pile foundations by the offshore wind sector. Int. J. Environ. Stud. 2013, 70, 777–791. [Google Scholar] [CrossRef]
- Esteban, M.; Lopes-Gutierrez, J.; Diez, J.; Negro, V. Foundations for offshore wind farms. In Proceedings of the 12th International Conference on Environmental Science and Technology, Rhodes, Greece, 8–10 October 2011; pp. 516–523. [Google Scholar]
- Fischer, T.; De Vries, W.E.; Cordle, A. Executive Summary (WP4: Offshore Foundations and Support Structures), Report—Project Upwind and Integrated Wind Turbine Design, Upwind, TU Delft Publications, Stevinweg, Delft. 2011. Available online: http://resolver.tudelft.nl/uuid:7ff42174-70ab-459d-b709-3bab9c2f9c4b (accessed on 19 April 2023).
- Frigaard, P.; Hansen, E.A.; Christensen, E.D.; Sand, M. Effect of breaking waves on scour processes around circular offshore wind turbine foundations. In Proceedings of the Copenhagen Offshore Wind Conference & Exhibition, Copenhagen, Denmark, 26–28 October 2005; pp. 1–11. [Google Scholar]
- Lin, Y.B.; Lin, T.K.; Chang, C.C.; Huang, C.W.; Chen, B.T.; Lai, J.S.; Chang, K.C. Visible light communication system for offshore wind turbine foundation scour early warning monitoring. Water 2019, 11, 1486. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Yang, J.; Li, R.-Y. Calculation of local scour around wind turbine’s pile of offshore wind farm. J. Waterw. Harb. 2012, 33, 57–60. [Google Scholar]
- Whitehouse, R.J.S.; Harris, J.; Sutherland, J.; Rees, J. An assessment of field data for scour at offshore wind turbine foundations. In Proceedings of the ICSE 2008 (4th International Conference on Scour and Erosion), Tokyo, Japan, 5–7 November 2008; pp. 1–7. [Google Scholar]
- Abhinav, K.A.; Saha, N. Effect of scouring in sand on monopile-supported offshore wind turbines. Mar. Georesour. Geotechnol. 2017, 35, 817–828. [Google Scholar] [CrossRef]
- Harris, J.M.; Whitehouse, R.J.S.; Sutherland, J. Marine Scour and Offshore Wind: Lessons Learnt and Future Challenges. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; Volume 44373, pp. 849–858. [Google Scholar]
- Liu, P.-F.; Wu, T.-R.; Raichlen, F.; Synolakis, C.E.; Borrero, J.C. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 2005, 536, 107–144. [Google Scholar] [CrossRef]
- Wu, T.-R. A Numerical Study of Three-Dimensional Breaking Waves and Turbulence Effects; Cornell University: Ithaca, NY, USA, 2004. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Eymard, R.; Gallouët, T.; Herbin, R. Finite volume methods. In Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3); Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1018. [Google Scholar]
- Smagorinsky, J. General circulation experiments wiht the primitive equations I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Vuong, T.-H.-N.; Wu, T.-R.; Wang, C.-Y.; Chu, C.-R. Modeling the slump-type landslide tsunamis part II: Numerical simulation of tsunamis with Bingham landslide model. Appl. Sci. 2020, 10, 6872. [Google Scholar] [CrossRef]
- Wu, T.-R.; Vuong, T.-H.-N.; Lin, C.-W.; Wang, C.-Y.; Chu, C.-R. Modeling the Slump-Type Landslide Tsunamis Part I: Developing a Three-Dimensional Bingham-Type Landslide Model. Appl. Sci. 2020, 10, 6501. [Google Scholar] [CrossRef]
- Bingham, E.C. An Investigation of the Laws of Plastic Flow; US Government Printing Office: Washington, DC, USA, 1917.
- Papanastasiou, T.C. Flows of Materials with Yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Beverly, C.R.; Tanner, R.I. Numerical analysis of three-dimensional Bingham plastic flow. J. Nonnewton. Fluid Mech. 1992, 42, 85–115. [Google Scholar] [CrossRef]
- Jeong, S.W.; Leroueil, S.; Locat, J. Applicability of power law for describing the rheology of soils of different origins and characteristics. Can. Geotech. J. 2009, 46, 1011–1023. [Google Scholar] [CrossRef]
- Huang, X.; García, M.H. A Herschel-Bulkley model for mud flow down a slope. J. Fluid Mech. 1998, 374, 305–333. [Google Scholar] [CrossRef]
- Jeong, S.W.; Wu, Y.H.; Cho, Y.C.; Ji, S.W. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea. Geomorphology 2018, 301, 79–91. [Google Scholar] [CrossRef]
- Jeong, S.-W. Shear rate-dependent rheological properties of mine tailings: Determination of dynamic and static yield stresses. Appl. Sci. 2019, 9, 4744. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991; Volume 2. [Google Scholar]
- Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017, 122, 87–107. [Google Scholar] [CrossRef]
- Sumer, B.M.; Petersen, T.U.; Locatelli, L.; Fredsøe, J.; Musumeci, R.E.; Foti, E. Backfilling of a Scour Hole around a Pile in Waves and Current. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 9–23. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, A.; Hasselmann, D.E.; Kruseman, P. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP), Report—Project Jonswap, Deutches Hydrographisches Institut, TU Delft Publications, Stevinweg, Delft. 1973. Available online: http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc (accessed on 19 April 2023).
- DNVGL-ST-0126; Support Structures for Wind Turbines. Det Norske Veritas (DNV): Bærum, Norway, 2018.
Condition No. | Wave Type | Hydrodynamic Conditions |
---|---|---|
1 | Constant ocean current | U = 1.0 m/s |
2 | Regular wave (100-year return period storm wave conditions) | Wave height H = 3.0 m Wave period T = 5.0 s |
3 | Regular wave—current (100-year return period storm wave conditions) | Wave height H = 3.0 m Wave period T = 5.0 s Current velocity U = 1.0 m/s |
4 | Irregular wave (100-year return period storm wave conditions) | Significant wave height Hs = 3.0 m Peak period Tp = 5.0 s |
Case No. | Wave Type | Wind Turbine Type | Significant Wave (Hs) | Peak Period (Tp) | Current Velocity (U) |
---|---|---|---|---|---|
5-1 | Irregular wave | Tripod | 6.0 m | 8.0 s | - |
5-2 | Irregular wave—current | Tripod | 2.6 m/s | ||
5-3 | Irregular wave | Jack-up (4-leg) | - | ||
5-4 | Irregular wave—current | Jack-up (4-leg) | 2.6 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuong, T.-H.-N.; Wu, T.-R.; Huang, Y.-X.; Hsu, T.-W. Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. J. Mar. Sci. Eng. 2023, 11, 936. https://doi.org/10.3390/jmse11050936
Vuong T-H-N, Wu T-R, Huang Y-X, Hsu T-W. Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. Journal of Marine Science and Engineering. 2023; 11(5):936. https://doi.org/10.3390/jmse11050936
Chicago/Turabian StyleVuong, Thi-Hong-Nhi, Tso-Ren Wu, Yi-Xuan Huang, and Tai-Wen Hsu. 2023. "Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan" Journal of Marine Science and Engineering 11, no. 5: 936. https://doi.org/10.3390/jmse11050936
APA StyleVuong, T.-H.-N., Wu, T.-R., Huang, Y.-X., & Hsu, T.-W. (2023). Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. Journal of Marine Science and Engineering, 11(5), 936. https://doi.org/10.3390/jmse11050936