Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan
Abstract
1. Introduction
2. Numerical Model
2.1. Fluid Solver
2.2. Rheological Model
3. Model Validation
4. Monopile Wind Turbine
5. Tripod and Jack-Up (4-Leg) Wind Turbines
5.1. Case 5-1: Tripod Wind Turbine under Random Waves
5.2. Case 5-2: Tripod Wind Turbine under Random Waves and Current
5.3. Case 5-3: Jack-Up (4-Leg) Wind Turbine under Random Waves
5.4. Case 5-4: Jack-Up (4-Leg) Wind Turbine under Random Wave—Current
6. Discussions
7. Conclusions
- Waves, including regular and irregular waves, do not increase the scour depth compared with currents only.
- The backfilling phenomenon of the scour hole explains the disappearance and reappearance of the local scour in the wave conditions.
- In the case of random wave–current coupling, the results present a signal of scour evolution. However, the scour depth is shallow at .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.H.; Yang, R.Y.; Hsiao, S.C.; Hwung, H.H. Experimental study of scour around monopile and jacket-type offshore wind turbine foundations. J. Mar. Sci. Technol. 2019, 27, 91–100. [Google Scholar] [CrossRef]
- Chang, P.C.; Yang, R.Y.; Lai, C.M. Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan. Energies 2015, 8, 1685–1700. [Google Scholar] [CrossRef][Green Version]
- Fang, H.F. Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago. Renew. Energy 2014, 67, 237–241. [Google Scholar] [CrossRef]
- Igoe, D.; Gavin, K.; O’Kelly, B. An investigation into the use of push-in pile foundations by the offshore wind sector. Int. J. Environ. Stud. 2013, 70, 777–791. [Google Scholar] [CrossRef][Green Version]
- Esteban, M.; Lopes-Gutierrez, J.; Diez, J.; Negro, V. Foundations for offshore wind farms. In Proceedings of the 12th International Conference on Environmental Science and Technology, Rhodes, Greece, 8–10 October 2011; pp. 516–523. [Google Scholar]
- Fischer, T.; De Vries, W.E.; Cordle, A. Executive Summary (WP4: Offshore Foundations and Support Structures), Report—Project Upwind and Integrated Wind Turbine Design, Upwind, TU Delft Publications, Stevinweg, Delft. 2011. Available online: http://resolver.tudelft.nl/uuid:7ff42174-70ab-459d-b709-3bab9c2f9c4b (accessed on 19 April 2023).
- Frigaard, P.; Hansen, E.A.; Christensen, E.D.; Sand, M. Effect of breaking waves on scour processes around circular offshore wind turbine foundations. In Proceedings of the Copenhagen Offshore Wind Conference & Exhibition, Copenhagen, Denmark, 26–28 October 2005; pp. 1–11. [Google Scholar]
- Lin, Y.B.; Lin, T.K.; Chang, C.C.; Huang, C.W.; Chen, B.T.; Lai, J.S.; Chang, K.C. Visible light communication system for offshore wind turbine foundation scour early warning monitoring. Water 2019, 11, 1486. [Google Scholar] [CrossRef][Green Version]
- Wang, W.-Y.; Yang, J.; Li, R.-Y. Calculation of local scour around wind turbine’s pile of offshore wind farm. J. Waterw. Harb. 2012, 33, 57–60. [Google Scholar]
- Whitehouse, R.J.S.; Harris, J.; Sutherland, J.; Rees, J. An assessment of field data for scour at offshore wind turbine foundations. In Proceedings of the ICSE 2008 (4th International Conference on Scour and Erosion), Tokyo, Japan, 5–7 November 2008; pp. 1–7. [Google Scholar]
- Abhinav, K.A.; Saha, N. Effect of scouring in sand on monopile-supported offshore wind turbines. Mar. Georesour. Geotechnol. 2017, 35, 817–828. [Google Scholar] [CrossRef][Green Version]
- Harris, J.M.; Whitehouse, R.J.S.; Sutherland, J. Marine Scour and Offshore Wind: Lessons Learnt and Future Challenges. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; Volume 44373, pp. 849–858. [Google Scholar]
- Liu, P.-F.; Wu, T.-R.; Raichlen, F.; Synolakis, C.E.; Borrero, J.C. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 2005, 536, 107–144. [Google Scholar] [CrossRef][Green Version]
- Wu, T.-R. A Numerical Study of Three-Dimensional Breaking Waves and Turbulence Effects; Cornell University: Ithaca, NY, USA, 2004. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Eymard, R.; Gallouët, T.; Herbin, R. Finite volume methods. In Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3); Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1018. [Google Scholar]
- Smagorinsky, J. General circulation experiments wiht the primitive equations I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Vuong, T.-H.-N.; Wu, T.-R.; Wang, C.-Y.; Chu, C.-R. Modeling the slump-type landslide tsunamis part II: Numerical simulation of tsunamis with Bingham landslide model. Appl. Sci. 2020, 10, 6872. [Google Scholar] [CrossRef]
- Wu, T.-R.; Vuong, T.-H.-N.; Lin, C.-W.; Wang, C.-Y.; Chu, C.-R. Modeling the Slump-Type Landslide Tsunamis Part I: Developing a Three-Dimensional Bingham-Type Landslide Model. Appl. Sci. 2020, 10, 6501. [Google Scholar] [CrossRef]
- Bingham, E.C. An Investigation of the Laws of Plastic Flow; US Government Printing Office: Washington, DC, USA, 1917.
- Papanastasiou, T.C. Flows of Materials with Yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Beverly, C.R.; Tanner, R.I. Numerical analysis of three-dimensional Bingham plastic flow. J. Nonnewton. Fluid Mech. 1992, 42, 85–115. [Google Scholar] [CrossRef]
- Jeong, S.W.; Leroueil, S.; Locat, J. Applicability of power law for describing the rheology of soils of different origins and characteristics. Can. Geotech. J. 2009, 46, 1011–1023. [Google Scholar] [CrossRef]
- Huang, X.; García, M.H. A Herschel-Bulkley model for mud flow down a slope. J. Fluid Mech. 1998, 374, 305–333. [Google Scholar] [CrossRef]
- Jeong, S.W.; Wu, Y.H.; Cho, Y.C.; Ji, S.W. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea. Geomorphology 2018, 301, 79–91. [Google Scholar] [CrossRef]
- Jeong, S.-W. Shear rate-dependent rheological properties of mine tailings: Determination of dynamic and static yield stresses. Appl. Sci. 2019, 9, 4744. [Google Scholar] [CrossRef][Green Version]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991; Volume 2. [Google Scholar]
- Baykal, C.; Sumer, B.M.; Fuhrman, D.R.; Jacobsen, N.G.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017, 122, 87–107. [Google Scholar] [CrossRef][Green Version]
- Sumer, B.M.; Petersen, T.U.; Locatelli, L.; Fredsøe, J.; Musumeci, R.E.; Foti, E. Backfilling of a Scour Hole around a Pile in Waves and Current. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 9–23. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, A.; Hasselmann, D.E.; Kruseman, P. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP), Report—Project Jonswap, Deutches Hydrographisches Institut, TU Delft Publications, Stevinweg, Delft. 1973. Available online: http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc (accessed on 19 April 2023).
- DNVGL-ST-0126; Support Structures for Wind Turbines. Det Norske Veritas (DNV): Bærum, Norway, 2018.
Condition No. | Wave Type | Hydrodynamic Conditions |
---|---|---|
1 | Constant ocean current | U = 1.0 m/s |
2 | Regular wave (100-year return period storm wave conditions) | Wave height H = 3.0 m Wave period T = 5.0 s |
3 | Regular wave—current (100-year return period storm wave conditions) | Wave height H = 3.0 m Wave period T = 5.0 s Current velocity U = 1.0 m/s |
4 | Irregular wave (100-year return period storm wave conditions) | Significant wave height Hs = 3.0 m Peak period Tp = 5.0 s |
Case No. | Wave Type | Wind Turbine Type | Significant Wave (Hs) | Peak Period (Tp) | Current Velocity (U) |
---|---|---|---|---|---|
5-1 | Irregular wave | Tripod | 6.0 m | 8.0 s | - |
5-2 | Irregular wave—current | Tripod | 2.6 m/s | ||
5-3 | Irregular wave | Jack-up (4-leg) | - | ||
5-4 | Irregular wave—current | Jack-up (4-leg) | 2.6 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuong, T.-H.-N.; Wu, T.-R.; Huang, Y.-X.; Hsu, T.-W. Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. J. Mar. Sci. Eng. 2023, 11, 936. https://doi.org/10.3390/jmse11050936
Vuong T-H-N, Wu T-R, Huang Y-X, Hsu T-W. Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. Journal of Marine Science and Engineering. 2023; 11(5):936. https://doi.org/10.3390/jmse11050936
Chicago/Turabian StyleVuong, Thi-Hong-Nhi, Tso-Ren Wu, Yi-Xuan Huang, and Tai-Wen Hsu. 2023. "Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan" Journal of Marine Science and Engineering 11, no. 5: 936. https://doi.org/10.3390/jmse11050936
APA StyleVuong, T.-H.-N., Wu, T.-R., Huang, Y.-X., & Hsu, T.-W. (2023). Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan. Journal of Marine Science and Engineering, 11(5), 936. https://doi.org/10.3390/jmse11050936