# Optimization Study of Marine Energy Harvesting from Vortex-Induced Vibration Using a Response-Surface Method

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optimization Methodology

#### 2.1. Concept of Response-Surface Method

#### 2.2. Feasibility Verification of Response-Surface Method

## 3. Numerical Methods of Modeling Fluid–Structure Interaction

#### 3.1. Computational Fluid Dynamics

#### 3.2. Rigid Body Motions

## 4. Test Case Description and Solution Verification

## 5. Simulation Design Using a Response-Surface Method

#### 5.1. Simulation Design and Statistical Analysis

#### 5.2. Verification of Optimum Parameters Using CFD Simulations

## 6. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

ANOVA | Analysis of variance |

BBD | Box–Behnken design |

CFD | Computational-fluid dynamics |

CFL | Courant–Friedrichs–Lewy number |

DOE | Design-of-experiment |

DOF | Degree of freedom |

RANS | Reynolds-averaged Navier–Stokes |

RSM | Response-surface method |

RSM-BBD | Box–Behnken design response surface method |

VIV | Vortex-induced vibration |

VIVACE | Vortex-induced vibration aquatic clean energy |

Nomenclature | |

$\Delta t$ | Time step |

$\Delta x$ | Grid size |

${\delta}_{D}$ | Numerical error |

$\u03f5$ | Error variable |

$\zeta $ | Damping ratio |

$\eta $ | Energy capture efficiency |

$\nu $ | Kinematic viscosity |

$\rho $ | Density |

${\varphi}_{i}$ | Solution obtained on grid i |

${\varphi}_{\infty}$ | Numerical benchmark result |

${A}^{*}$ | Amplitude ratio |

c | Structural damping |

${c}_{d}$ | Drag coefficient |

${c}_{l}$ | Lift coefficient |

d | Diameter |

${f}_{n}$ | Natural frequency |

k | Structural stiffness |

$\mathbf{F}$ | Force vector |

$\mathbf{g}$ | Gravity vector |

l | Length |

m | Structural mass |

${m}^{*}$ | Mass ratio |

$\mathbf{n}$ | Surface normal vector |

p | Pressure |

P | Ratio of convergence |

${p}_{RE}$ | Observed order of accuracy |

${p}_{th}$ | Theoretical order of convergence |

R | Convergence ratio |

$Re$ | Reynolds number |

T | Oscillatory period |

${U}_{D}$ | Uncertainty |

v | Free stream velocity |

$\mathbf{v}$ | Fluid velocity field vector |

${v}_{r}$ | Reduced velocity |

${x}_{i}$ | Operating variable |

${y}^{+}$ | Dimensionless grid height for the first-layer grid |

## References

- Khan, M.; Bhuyan, G.; Iqbal, M.; Quaicoe, J. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy
**2009**, 86, 1823–1835. [Google Scholar] [CrossRef] - Williamson, C.H.; Roshko, A. Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct.
**1988**, 2, 355–381. [Google Scholar] [CrossRef] - Feng, C. The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1968. [Google Scholar]
- Khalak, A.; Williamson, C. Dynamics of a hydroelastic cylinder with very low mass and damping. J. Fluids Struct.
**1996**, 10, 455–472. [Google Scholar] [CrossRef] - Khalak, A.; Williamson, C. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. J. Fluids Struct.
**1997**, 11, 973–982. [Google Scholar] [CrossRef] - Govardhan, R.; Williamson, C. Defining the ‘modified Griffin plot’ in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. J. Fluid Mech.
**2006**, 561, 147–180. [Google Scholar] [CrossRef] - Williamson, C.; Jauvtis, N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion. Eur. J. Mech.-B/Fluids
**2004**, 23, 107–114. [Google Scholar] [CrossRef] - Shi, L.; Yang, G.; Yao, S. Large eddy simulation of flow past a square cylinder with rounded leading corners: A comparison of 2D and 3D approaches. J. Mech. Sci. Technol.
**2018**, 32, 2671–2680. [Google Scholar] [CrossRef] - Cravero, C.; Marogna, N.; Marsano, D. A Numerical Study of correlation between recirculation length and shedding frequency in vortex shedding phenomena. WSEAS Trans. Fluid Mech.
**2021**, 16, 48–62. [Google Scholar] [CrossRef] - Bearman, P.W. Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech.
**1984**, 16, 195–222. [Google Scholar] [CrossRef] - Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.
**2004**, 19, 389–447. [Google Scholar] [CrossRef] - Wu, X.; Ge, F.; Hong, Y. A review of recent studies on vortex-induced vibrations of long slender cylinders. J. Fluids Struct.
**2012**, 28, 292–308. [Google Scholar] [CrossRef] [Green Version] - Bernitsas, M.M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. In Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 4–9 June 2006; Volume 47470, pp. 619–637. [Google Scholar]
- Chang, C.C.J.; Kumar, R.A.; Bernitsas, M.M. VIV and galloping of single circular cylinder with surface roughness at 3.0 × 10
^{4}≤ Re ≤ 1.2 × 10^{5}. Ocean Eng.**2011**, 38, 1713–1732. [Google Scholar] [CrossRef] - Ding, L.; Bernitsas, M.M.; Kim, E.S. 2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000< Re< 105,000. Ocean Eng.
**2013**, 72, 429–440. [Google Scholar] - Garcia, E.M.; Park, H.; Chang, C.C.; Bernitsas, M.M. Effect of damping on variable added mass and lift of circular cylinders in vortex-induced vibrations. In Proceedings of the 2014 Oceans-St. John’s, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–5. [Google Scholar]
- Narendran, K.; Murali, K.; Sundar, V. Investigations into efficiency of vortex induced vibration hydro-kinetic energy device. Energy
**2016**, 109, 224–235. [Google Scholar] [CrossRef] - Ding, L.; Zhang, L.; Wu, C.; Mao, X.; Jiang, D. Flow induced motion and energy harvesting of bluff bodies with different cross sections. Energy Convers. Manag.
**2015**, 91, 416–426. [Google Scholar] [CrossRef] - Zhang, B.; Song, B.; Mao, Z.; Tian, W.; Li, B. Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement. Energy
**2017**, 133, 723–736. [Google Scholar] [CrossRef] - Wu, W.; Wang, J. Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number. Eur. J. Mech.-B/Fluids
**2018**, 68, 153–166. [Google Scholar] [CrossRef] - Zhang, B.; Mao, Z.; Song, B.; Ding, W.; Tian, W. Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM. Energy
**2018**, 144, 218–231. [Google Scholar] [CrossRef] - Raghavan, K.; Bernitsas, M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Eng.
**2011**, 38, 719–731. [Google Scholar] [CrossRef] - Zhang, B.; Mao, Z.; Song, B.; Tian, W.; Ding, W. Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation. Ocean Eng.
**2018**, 165, 55–68. [Google Scholar] [CrossRef] - Wang, J.; Li, G.; Zhou, S.; Litak, G. Enhancing wind energy harvesting using passive turbulence control devices. Appl. Sci.
**2019**, 9, 998. [Google Scholar] [CrossRef] [Green Version] - Jankovic, A.; Chaudhary, G.; Goia, F. Designing the design of experiments (DOE)–An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build.
**2021**, 250, 111298. [Google Scholar] [CrossRef] - Box, G.E.; Wilson, K.B. On the experimental attainment of optimum conditions. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 270–310. [Google Scholar]
- Seok, W.; Kim, G.H.; Seo, J.; Rhee, S.H. Application of the design of experiments and computational fluid dynamics to bow design improvement. J. Mar. Sci. Eng.
**2019**, 7, 226. [Google Scholar] [CrossRef] [Green Version] - Yi, Q.; Zhang, G.; Amon, B.; Hempel, S.; Janke, D.; Saha, C.K.; Amon, T. Modelling air change rate of naturally ventilated dairy buildings using response surface methodology and numerical simulation. Build. Simul.
**2021**, 14, 827–839. [Google Scholar] [CrossRef] - Qian, G.; Xiaobing, Y.; Zhenjiang, W.; Dexin, C.; Jianyuan, H. Optimization of proportioning of mixed aggregate filling slurry based on BBD response surface method. J. Hunan Univ. Nat. Sci.
**2019**, 46, 47–55. [Google Scholar] - Zhao, M.; Wu, L.; Song, S.; Tong, M.; Yue, M. Optimization of extraction process of gantaishu granules by Box-Behnken response surface method. Mod. Tradit. Chin. Med.
**2022**, 42, 56–61. [Google Scholar] - Tak, B.y.; Tak, B.s.; Kim, Y.j.; Park, Y.j.; Yoon, Y.h.; Min, G.h. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD). J. Ind. Eng. Chem.
**2015**, 28, 307–315. [Google Scholar] [CrossRef] [Green Version] - Mohammed, B.B.; Hsini, A.; Abdellaoui, Y.; Abou Oualid, H.; Laabd, M.; El Ouardi, M.; Addi, A.A.; Yamni, K.; Tijani, N. Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: Synthesis, characterization and adsorption process optimization using BBD-RSM modeling. J. Environ. Chem. Eng.
**2020**, 8, 104419. [Google Scholar] [CrossRef] - Agrawal, M.; Saraf, S.; Pradhan, M.; Patel, R.J.; Singhvi, G.; Alexander, A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother.
**2021**, 141, 111919. [Google Scholar] [CrossRef] - Reghioua, A.; Barkat, D.; Jawad, A.H.; Abdulhameed, A.S.; Al-Kahtani, A.A.; ALOthman, Z.A. Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe
_{3}O_{4}nanocomposite and textile dye removal. J. Environ. Chem. Eng.**2021**, 9, 105166. [Google Scholar] [CrossRef] - Ferreira, S.C.; Bruns, R.; Ferreira, H.S.; Matos, G.D.; David, J.; Brandão, G.; da Silva, E.P.; Portugal, L.; Dos Reis, P.; Souza, A.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta
**2007**, 597, 179–186. [Google Scholar] [CrossRef] - Wu, S. Research on VIV Mechanism of Cylinder Oscillator with Damping in Tidal Current Energy Converter. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Yue, Y. Numerical Simulation of Current-Induced Vibration of a Single Confined Cylinder Generated by Ocean Current Energy. Ph.D. Thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2019. [Google Scholar]
- Bai, X.; Chen, Y.; Sun, H.; Sun, M. Numerical study on ocean current energy converter by tandem cylinder with different diameter using flow-induced vibration. Ocean Eng.
**2022**, 257, 111539. [Google Scholar] [CrossRef] - Palanikumar, K. Introductory Chapter: Response Surface Methodology in Engineering Science. In Response Surface Methodology in Engineering Science; IntechOpen: London, UK, 2021. [Google Scholar]
- Box, G.; Behnken, D. Some new three level second order designs for surface fitting. Stat. Tech. Res. Group Tech. Rep.
**1958**, 1, 455–475. [Google Scholar] - Box, G.E.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics
**1960**, 2, 455–475. [Google Scholar] [CrossRef] - Borkowski, J.J. Spherical prediction-variance properties of central composite and Box—Behnken designs. Technometrics
**1995**, 37, 399–410. [Google Scholar] - Jiang, C. Mathematical Modelling of Wave-Induced Motions and Loads on Moored Offshore Structures. Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2021. [Google Scholar]
- Jones, W.P.; Launder, B.E. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf.
**1972**, 15, 301–314. [Google Scholar] [CrossRef] - Ong, M.C.; Utnes, T.; Holmedal, L.E.; Myrhaug, D.; Pettersen, B. Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers. Mar. Struct.
**2009**, 22, 142–153. [Google Scholar] [CrossRef] - Shao, J.; Zhang, C. Numerical analysis of the flow around a circular cylinder using RANS and LES. Int. J. Comput. Fluid Dyn.
**2006**, 20, 301–307. [Google Scholar] [CrossRef] - Xing, T.; Stern, F. Factors of safety for Richardson extrapolation. J. Fluids Eng.
**2010**, 132, 061403. [Google Scholar] [CrossRef] [Green Version] - Phillips, T.S.; Roy, C.J. Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics. J. Fluids Eng.
**2014**, 136, 121401. [Google Scholar] [CrossRef] - Yuan, W.; Sun, H.; Kim, E.S.; Li, H.; Beltsos, N.; Bernitsas, M.M. Hydrokinetic Energy Conversion by Flow-Induced Oscillation of Two Tandem Cylinders of Different Stiffness. J. Offshore Mech. Arct. Eng.
**2021**, 143, 062001. [Google Scholar] [CrossRef] - Anwar, M.U.; Khan, N.B.; Arshad, M.; Munir, A.; Bashir, M.N.; Jameel, M.; Rehman, M.F.; Eldin, S.M. Variation in Vortex-Induced Vibration Phenomenon Due to Surface Roughness on Low-and High-Mass-Ratio Circular Cylinders: A Numerical Study. J. Mar. Sci. Eng.
**2022**, 10, 1465. [Google Scholar] [CrossRef] - Wang, H.; Yu, H.; Sun, Y.; Sharma, R.N. The influence of reduced velocity on the control of two-degree-of-freedom vortex induced vibrations of a circular cylinder via synthetic jets. Fluid Dyn. Res.
**2022**, 54, 055506. [Google Scholar] [CrossRef] - Bernitsas, M.M. Harvesting energy by flow included motions. In Springer Handbook of Ocean Engineering; Springer: New York, NY, USA, 2016; pp. 1163–1244. [Google Scholar]
- Jiang, C.; Chiba, S.; Waki, M.; Fujita, K.; el Moctar, O. Investigation of a Novel Wave Energy Generator Using Dielectric Elastomer. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Virtual, Online, 3–7 August 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84416, p. V009T09A012. [Google Scholar]

**Figure 1.**The Box–Behnken design as derived from a cube, consisting of the central point and the middle points of the edges.

**Figure 2.**The response-surface images computed from results collected from [38] where the interaction effects of operating variables on the energy conversion efficiency are demonstrated (the data was from [38]). (

**a**) Interaction of spacing ratio and diameter ratio. (

**b**) Interaction of spacing ratio and reduced velocity. (

**c**) Interaction of diameter ratio and reduced velocity.

**Figure 3.**Perspective views of the computational domain, mesh topology, and grid details near the considered cylinder. (

**a**) Sketch of computational domain. (

**b**) Overview of mesh topology. (

**c**) Grid details near cylinder.

**Figure 4.**Convergencestudy, in terms of time-step and grid-spacing sizes, using the predicted amplitude ratios.

**Figure 5.**Response amplitude ratio and lift coefficient in the time and frequency domains, at its optimal operating condition ($Re=4.97\times {10}^{4}$).

**Figure 6.**Example distributions of velocity and vorticity for the considered cylinder, at its optimal operating condition ($Re=4.97\times {10}^{4}$). (

**a**) Distribution of velocity magnitude. (

**b**) Distribution of vorticity magnitude.

**Figure 7.**The predicted energy capture ratio by the BBD algorithm versus the actual energy capture ratio, simulated using CFD.

Run | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | OP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

$\eta $ [%] | 29.87 | 18.33 | 35.41 | 21.66 | 29.87 | 27.08 | 14.16 | 29.87 | 25.25 | 16.25 | 22.54 | 9.58 | 28.33 | 29.87 | 16.25 | 29.87 | 26.66 | 36.10 |

**Table 2.**Estimated errors and uncertainties of response ratio (${A}^{*}$) based on various time-step and grid-spacing sizes.

Property | ${\mathit{A}}_{1}^{*}$ [-] | ${\mathit{A}}_{2}^{*}$ [-] | ${\mathit{A}}_{3}^{*}$ [-] | R [-] | ${\mathit{A}}_{\mathit{\infty}}^{*}$ [-] | ${\mathit{\u03f5}}_{1}$ [%] | ${\mathit{\u03f5}}_{2}$ [%] | ${\mathit{\u03f5}}_{3}$ [%] | U [%] |
---|---|---|---|---|---|---|---|---|---|

$\Delta t$ | 0.5625 | 0.6043 | 0.6075 | 0.077 | 0.6080 | −7.48 | −0.61 | −0.08 | 0.41 |

$\Delta x$ | 0.5950 | 0.6075 | 0.6087 | 0.096 | 0.6089 | −2.29 | −0.76 | −0.04 | 0.16 |

Variables | Symbols | Level −1 | Level 0 | Level 1 |
---|---|---|---|---|

Velocity [m/s] | A | 0.55 | 0.65 | 0.75 |

Stiffness [N/m] | B | 300 | 400 | 500 |

Mass [kg] | C | 2.60 | 3.00 | 3.40 |

Run | Factor A Velocity [m/s] | Factor B Stiffness [N/m] | Factor C Mass [kg] | Response $\mathit{\eta}$ Efficiency [-] |
---|---|---|---|---|

1 | 0.55 | 300 | 3.0 | 0.140 |

2 | 0.75 | 300 | 3.0 | 0.127 |

3 | 0.55 | 500 | 3.0 | 0.166 |

4 | 0.75 | 500 | 3.0 | 0.113 |

5 | 0.55 | 400 | 2.6 | 0.139 |

6 | 0.75 | 400 | 2.6 | 0.095 |

7 | 0.55 | 400 | 3.4 | 0.128 |

8 | 0.75 | 400 | 3.4 | 0.112 |

9 | 0.65 | 300 | 2.6 | 0.120 |

10 | 0.65 | 500 | 2.6 | 0.129 |

11 | 0.65 | 300 | 3.4 | 0.124 |

12 | 0.65 | 500 | 3.4 | 0.116 |

13 | 0.65 | 400 | 3.0 | 0.124 |

Source | Coefficient | Sum of Squares | DOF | Mean Square | f-Value | p-Value |
---|---|---|---|---|---|---|

Model | 0.1240 | 0.0034 | 9 | 0.0004 | 55.50 | <0.0001 |

A | −0.0158 | 0.0020 | 1 | 0.0020 | 290.9 | <0.0001 |

B | 0.0016 | 0.0000 | 1 | 0.0000 | 3.100 | 0.1218 |

C | −0.0004 | 1.1 × 10${}^{-6}$ | 1 | 1.1 × 10${}^{-6}$ | 0.165 | 0.6968 |

AB | −0.0100 | 0.0004 | 1 | 0.0004 | 58.64 | 0.0001 |

AC | 0.0070 | 0.0002 | 1 | 0.0002 | 28.73 | 0.0011 |

BC | −0.0042 | 0.0001 | 1 | 0.0001 | 10.59 | 0.0140 |

A${}^{2}$ | 0.0044 | 0.0001 | 1 | 0.0001 | 11.81 | 0.0109 |

B${}^{2}$ | 0.0081 | 0.0003 | 1 | 0.0003 | 40.75 | 0.0004 |

C${}^{2}$ | −0.0099 | 0.0004 | 1 | 0.0004 | 60.19 | 0.0001 |

Residual | - | 0.0000 | 7 | 6.8 × 10${}^{-6}$ | - | - |

Adj. R${}^{2}$ | 0.9684 | - | - | - | - | - |

Pre. R${}^{2}$ | 0.7789 | - | - | - | - | - |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, P.; Jia, S.; Li, D.; el Moctar, O.; Jiang, C.
Optimization Study of Marine Energy Harvesting from Vortex-Induced Vibration Using a Response-Surface Method. *J. Mar. Sci. Eng.* **2023**, *11*, 668.
https://doi.org/10.3390/jmse11030668

**AMA Style**

Xu P, Jia S, Li D, el Moctar O, Jiang C.
Optimization Study of Marine Energy Harvesting from Vortex-Induced Vibration Using a Response-Surface Method. *Journal of Marine Science and Engineering*. 2023; 11(3):668.
https://doi.org/10.3390/jmse11030668

**Chicago/Turabian Style**

Xu, Peng, Shanshan Jia, Dongao Li, Ould el Moctar, and Changqing Jiang.
2023. "Optimization Study of Marine Energy Harvesting from Vortex-Induced Vibration Using a Response-Surface Method" *Journal of Marine Science and Engineering* 11, no. 3: 668.
https://doi.org/10.3390/jmse11030668