Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump
Abstract
:1. Introduction
2. Theoretical Background
2.1. Convolutional Neural Network
2.2. Bayesian Algorithm
3. Proposed Diagnosis Method
4. Design of the Experimental Bench
5. Results and Discussion
5.1. Signal Analysis
5.2. Identification Results
5.2.1. Analysis of LR
5.2.2. Analysis of Epoch
5.2.3. Analysis of Dropout Rate
5.2.4. Effect of Batch Size on Diagnostic Accuracy
5.2.5. Effect of Kernel Number on Diagnostic Accuracy
5.2.6. Effect of Kernel Size on Diagnostic Accuracy
5.2.7. Validation of Diagnostic Model
5.2.8. Optimization of Diagnostic Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, Y.; Li, Z.; Liu, S.; Huang, J.; Niu, L.; Xiong, X.; Niu, C.; Wu, B.; Zhou, X.; Yan, J.; et al. Experimental investigation on cavitation and cavitation detection of axial piston pump based on MLP-Mixer. Measurement 2022, 200, 111582. [Google Scholar] [CrossRef]
- Kumar, A.; Gandhi, C.P.; Tang, H.; Vashishtha, G.; Kumar, R.; Zhou, Y.; Xiang, J. Adaptive sensitive frequency band selection for VMD to identify defective components of an axial piston pump. Chin. J. Aeronaut. 2022, 35, 250–265. [Google Scholar] [CrossRef]
- Haidak, G.; Wei, X.; Li, F.; Larbi, A.; Wang, D. Heat effects modelling on the efficiency loss of the lubricating interface between piston and cylinder in axial piston pumps. Tribol. Int. 2022, 175, 107846. [Google Scholar] [CrossRef]
- Ying, P.; Tang, H.; Ye, S.; Ren, Y.; Xiang, J.; Kumar, A. Dynamic modelling of swashplate with local defects in axial piston pump and coupled vibration analysis. Mech. Syst. Signal Process. 2023, 15, 110081. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 2022, 52, 101554. [Google Scholar] [CrossRef]
- Haidak, G.; Wang, D. Analysis of damage and failure mechanism under a lubricated slipper/swashplate interface in axial piston machines. Procedia Struct. Integr. 2022, 35, 124–131. [Google Scholar] [CrossRef]
- Nie, S.; He, H.; Ji, H.; Nie, S.; Yan, X.; Yin, F. Failure analysis of auxiliary support bearing/shaft tribopair in seawater hydraulic axial piston pump. Eng. Fail. Anal. 2023, 146, 107069. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, W.; Zhao, Z.; Li, W.; Ng, K.K.H. Vibration signal-based early fault prognosis: Status quo and applications. Adv. Eng. Inform. 2022, 52, 101609. [Google Scholar] [CrossRef]
- Gu, L.; Ma, Z.; Tian, Q.; Sun, Y. Application of instantaneous speed fluctuation signal in fault diagnosis of axial piston pump. J. Drain. Irrig. Mach. Eng. 2021, 39, 740–746. [Google Scholar]
- Ye, M.; Yan, X.; Chen, N.; Jia, M. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network. Appl. Acoust. 2023, 202, 109143. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Li, Y. Vibration signal fusion using improved empirical wavelet transform and variance contribution rate for weak fault detection of hydraulic pumps. ISA Trans. 2020, 107, 385–401. [Google Scholar] [CrossRef]
- Zhou, Y.; Kumar, A.; Parkash, C.; Vashishtha, G.; Tang, H.; Glowacz, A.; Dong, A.; Xiang, J. Development of entropy measure for selecting highly sensitive WPT band to identify defective components of an axial piston pump. Appl. Acoust. 2023, 203, 109225. [Google Scholar] [CrossRef]
- Tang, H.; Fu, Z.; Huang, Y. A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load. Appl. Acoust. 2021, 172, 107634. [Google Scholar] [CrossRef]
- Glowacz, A. Thermographic fault diagnosis of shaft of BLDC motor. Sensors 2022, 22, 8537. [Google Scholar] [CrossRef]
- Qian, P.; Pu, C.; Liu, L.; Li, X.; Zhang, B.; Gu, Z.; Meng, D. Development of a new high-precision friction test platform and experimental study of friction characteristics for pneumatic cylinders. Meas. Sci. Technol. 2022, 33, 065001. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal. Eng. Fail. Anal. 2022, 138, 106300. [Google Scholar] [CrossRef]
- Zhu, Z.; Lei, Y.; Qi, G.; Chai, Y.; Mazur, N.; An, Y.; Huang, X. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement 2023, 206, 112346. [Google Scholar] [CrossRef]
- Kumar, D.; Dewangan, A.; Tiwari, R.; Bordoloi, D.J. Identification of inlet pipe blockage level in centrifugal pump over a range of speeds by deep learning algorithm using multi-source data. Measurement 2021, 186, 110146. [Google Scholar] [CrossRef]
- Wang, A.; Pei, Y.; Qian, Z.; Zareipour, H.; Jing, B.; An, J. A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification. Appl. Energy 2022, 321, 119373. [Google Scholar] [CrossRef]
- Yuan, J.; Luo, L.; Jiang, H.; Zhao, Q.; Zhou, B. An intelligent index-driven multiwavelet feature extraction method for mechanical fault diagnosis. Mech. Syst. Signal Process. 2023, 188, 109992. [Google Scholar] [CrossRef]
- Shi, M.; Ding, C.; Wang, R.; Song, Q.; Shen, C.; Huang, W.; Zhu, Z. Deep hypergraph autoencoder embedding: An efficient intelligent approach for rotating machinery fault diagnosis. Knowl. Based Syst. 2023, 260, 110172. [Google Scholar] [CrossRef]
- Liu, J. Gas path fault diagnosis of aircraft engine using HELM and transfer learning. Eng. Appl. Artif. Intell. 2022, 114, 105149. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, J.; Tang, J.; Wang, Y.; Xu, H.; Zou, J.; Fan, S. A novel deep transfer learning method with inter-domain decision discrepancy minimization for intelligent fault diagnosis. Knowl. Based Syst. 2023, 259, 110065. [Google Scholar] [CrossRef]
- Qian, G.; Liu, J. Fault diagnosis based on conditional generative adversarial networks in nuclear power plants. Ann. Nucl. Energy 2022, 176, 109267. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, J.; Zhang, X.; Zi, Y.; Li, C.; Chen, J. A reliable feature-assisted contrastive generalization net for intelligent fault diagnosis under unseen machines and working conditions. Mech. Syst. Signal Process. 2023, 188, 110011. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, W. Mutual-assistance semi-supervised domain generalization network for intelligent fault diagnosis under unseen working conditions. Mech. Syst. Signal Process. 2023, 189, 110074. [Google Scholar] [CrossRef]
- Han, T.; Li, Y. Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles. Reliab. Eng. Syst. Saf. 2022, 226, 108648. [Google Scholar] [CrossRef]
- Zhou, T.; Han, T.; Droguett, E.L. Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliab. Eng. Syst. Saf. 2022, 224, 108525. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Z.; Wen, J.; Fu, R. Multiple hierarchical compression for deep neural network toward intelligent bearing fault diagnosis. Eng. Appl. Artif. Intell. 2022, 116, 105498. [Google Scholar] [CrossRef]
- Chao, Q.; Zhang, J.; Xu, B.; Wang, Q.; Lyu, F.; Li, K. Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps. Front. Mech. Eng. 2022, 17, 1. [Google Scholar] [CrossRef]
- Kumar, A.; Gandhi, C.P.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization. ISA Trans. 2022, 129, 555–563. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Tang, S.; Wang, R.; Su, H.; Wang, C. Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN. Appl. Acoust. 2022, 192, 108718. [Google Scholar] [CrossRef]
- Chao, Q.; Gao, H.; Tao, J.; Wang, Y.; Zhou, J.; Liu, C. Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals. Sci. China Technol. Sci. 2022, 65, 470–480. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization. Appl. Acoust. 2021, 183, 108336. [Google Scholar] [CrossRef]
- Xie, Y.; Sun, W.; Ren, M.; Chen, S.; Huang, Z.; Pan, X. Stacking ensemble learning models for daily runoff prediction using 1D and 2D CNNs. Expert Syst. Appl. 2023, 217, 119469. [Google Scholar] [CrossRef]
- Ali, D.; Mohammad, E.; Reza, H.; Biuok, E. A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults. Expert Syst. Appl. 2021, 167, 114094. [Google Scholar]
- An, F.; Wang, J. Rolling bearing fault diagnosis algorithm using overlapping group sparse-deep complex convolutional neural network. Nonlinear Dyn. 2022, 108, 2353–2368. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, X.; Zhang, Y.; Meng, L.; Tang, B. Highly imbalanced fault diagnosis of mechanical systems based on wavelet packet distortion and convolutional neural networks. Adv. Eng. Inform. 2022, 51, 101535. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform. Reliab. Eng. Syst. Saf. 2022, 224, 108560. [Google Scholar] [CrossRef]
- Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 2021, 50, 101406. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Zhang, H.; Xiong, L.; Lei, H.; Deng, S. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; Freitas, N.D. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Sadowski, P. The dropout learning algorithm. Artif. Intell. 2014, 210, 78–122. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. Comput. Sci. 2014. Available online: http://de.arxiv.org/pdf/1412.6980 (accessed on 1 January 2023).
Batch Size | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
8 | 16.16 | 16.08 | 16.17 | 16.27 | 16.10 | 16.20 | 16.02 | 16.20 | 16.16 | 16.12 | 16.15 |
16 | 12.12 | 12.93 | 12.01 | 11.99 | 12.37 | 12.53 | 12.23 | 12.15 | 12.00 | 12.06 | 12.24 |
21 | 11.94 | 12.04 | 11.77 | 11.82 | 11.79 | 11.89 | 11.75 | 11.77 | 11.72 | 11.74 | 11.82 |
32 | 10.40 | 10.33 | 10.38 | 10.34 | 10.63 | 10.513 | 10.37 | 10.47 | 10.47 | 10.58 | 10.45 |
42 | 10.09 | 10.02 | 10.08 | 10.15 | 10.05 | 10.20 | 10.03 | 10.13 | 9.94 | 10.19 | 10.09 |
56 | 9.78 | 9.90 | 10.05 | 10.06 | 9.80 | 9.89 | 9.93 | 9.92 | 10.09 | 10.09 | 9.95 |
64 | 9.97 | 9.82 | 9.97 | 9.78 | 9.77 | 9.70 | 9.94 | 9.96 | 10.28 | 9.90 | 9.91 |
84 | 9.99 | 9.83 | 9.54 | 9.69 | 10.28 | 10.26 | 10.02 | 9.91 | 9.79 | 9.97 | 9.93 |
C2/C1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10.21 | 10.65 | 11.01 | 10.32 | 10.57 | 10.73 | 10.56 | 11.42 | 10.38 | 10.58 | 10.64 |
1.5 | 11.22 | 11.17 | 11.01 | 11.14 | 11.15 | 11.00 | 11.17 | 11.12 | 11.03 | 11.03 | 11.10 |
2 | 11.12 | 11.19 | 10.99 | 11.26 | 11.09 | 11.06 | 10.91 | 10.93 | 11.05 | 11.21 | 11.08 |
2.5 | 10.66 | 10.91 | 10.98 | 11.00 | 10.90 | 10.95 | 10.88 | 10.65 | 10.85 | 10.75 | 10.85 |
3 | 11.89 | 11.98 | 12.05 | 10.89 | 10.96 | 10.95 | 11.38 | 11.55 | 11.03 | 11.02 | 11.37 |
3.5 | 11.20 | 11.14 | 11.05 | 11.22 | 11.042 | 11.08 | 10.96 | 11.034 | 10.91 | 11.16 | 11.08 |
4 | 11.41 | 11.14 | 11.23 | 11.09 | 11.02 | 11.10 | 10.90 | 11.03 | 11.109 | 11.35 | 11.14 |
Model | Average Accuracy (%) | Standard Deviation |
---|---|---|
T-LeNet | 94.06 | 0.08442 |
I-LeNet | 99.61 | 0.001624 |
3-CNN | 99.92 | 0.001342 |
4-CNN | 99.93 | 0.001135 |
VGG11 | 99.99 | 0.0002530 |
T-AlexNet | 99.94 | 0.001386 |
I-AlexNet | 99.99 | 0.0002530 |
Fault Type | I-AlexNet (%) | T-AlexNet (%) |
---|---|---|
zc | 100.0 | 100.0 |
xp | 100.0 | 100.0 |
sx | 100.0 | 99.4 |
hx | 100.0 | 98.4 |
th | 100.0 | 100.0 |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
I-AlexNet | 11.09 | 11.06 | 11.22 | 12.23 | 11.14 | 11.12 | 11.19 | 11.09 | 11.09 | 11.16 | 11.24 |
T-AlexNet | 11.15 | 11.05 | 11.22 | 11.15 | 11.08 | 10.90 | 10.95 | 10.91 | 11.05 | 10.96 | 11.04 |
T-LeNet | 4.14 | 4.38 | 4.13 | 4.08 | 4.28 | 4.18 | 4.18 | 4.28 | 4.16 | 4.06 | 4.19 |
I-LeNet | 4.78 | 4.63 | 4.89 | 4.83 | 7.72 | 4.72 | 4.80 | 4.75 | 4.88 | 4.80 | 5.08 |
3-CNN | 12.99 | 13.05 | 12.97 | 13.24 | 13.20 | 13.26 | 13.03 | 12.99 | 12.89 | 13.01 | 13.06 |
4-CNN | 13.38 | 13.45 | 13.60 | 13.68 | 13.67 | 13.56 | 13.79 | 13.52 | 13.67 | 13.43 | 13.58 |
VGG11 | 31.85 | 32.05 | 32.12 | 31.25 | 31.27 | 31.67 | 31.43 | 31.19 | 31.02 | 32.18 | 31.60 |
Serial Number | Hyperparameter | Range | Optimal Result |
---|---|---|---|
1 | LR | [0.0001, 0.001] | 0.00012 |
2 | Batch size | [24, 56] | 51 |
3 | Epoch | [20, 50] | 33 |
4 | Size of convolutional kernel (C1) | [5, 9] | 5 |
5 | Size of convolutional kernel (C2) | [3, 7] | 5 |
6 | Number of convolutional kernel (C1) | [30, 60] | 54 |
7 | Number of convolutional kernel (C2) | [80, 140] | 97 |
8 | Neurons of FC1 | [1000, 1600] | 1457 |
9 | Neurons of FC2 | [400, 800] | 541 |
10 | Dropout ratio | [0.1, 0.9] | 0.31 |
Fault Type | B-AlexNet | I-AlexNet | T-AlexNet |
---|---|---|---|
zc | 100.0 | 100.0 | 100.0 |
xp | 100.0 | 100.0 | 100.0 |
sx | 100.0 | 100.0 | 99.4 |
hx | 100.0 | 100.0 | 98.4 |
th | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhou, T.; Tang, S.; Yuan, S. Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump. J. Mar. Sci. Eng. 2023, 11, 616. https://doi.org/10.3390/jmse11030616
Zhu Y, Zhou T, Tang S, Yuan S. Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump. Journal of Marine Science and Engineering. 2023; 11(3):616. https://doi.org/10.3390/jmse11030616
Chicago/Turabian StyleZhu, Yong, Tao Zhou, Shengnan Tang, and Shouqi Yuan. 2023. "Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump" Journal of Marine Science and Engineering 11, no. 3: 616. https://doi.org/10.3390/jmse11030616
APA StyleZhu, Y., Zhou, T., Tang, S., & Yuan, S. (2023). Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump. Journal of Marine Science and Engineering, 11(3), 616. https://doi.org/10.3390/jmse11030616