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Abstract: Hydraulic axial piston pumps are the power source of fluid power systems and have impor-
tant applications in many fields. They have a compact structure, high efficiency, large transmission
power, and excellent flow variable performance. However, the crucial components of pumps easily
suffer from different faults. It is therefore important to investigate a precise fault identification method
to maintain reliability of the system. The use of deep models in feature learning, data mining, auto-
matic identification, and classification has led to the development of novel fault diagnosis methods. In
this research, typical faults and wears of the important friction pairs of piston pumps were analyzed.
Different working conditions were considered by monitoring outlet pressure signals. To overcome
the low efficiency and time-consuming nature of traditional manual parameter tuning, the Bayesian
algorithm was introduced for adaptive optimization of an established deep learning model. The pro-
posed method can explore potential fault feature information from the signals and adaptively identify
the main fault types. The average diagnostic accuracy was found to reach up to 100%, indicating the
ability of the method to detect typical faults of axial piston pumps with high precision.

Keywords: axial piston pump; fault identification; deep learning; Bayesian algorithm

1. Introduction

An axial piston pump is one of the hydraulic components with the highest technical
content in a hydraulic transmission system [1–3]. Axial piston pumps have been widely
applied in the transmission system of equipment in many fields, including offshore drilling
platforms, drilling machines, and diving equipment in deep sea, as depicted in Figure 1.
The structure of an axial piston pump consists of many friction pairs, meaning friction and
wear can occur during operation. Some critical friction pairs are illustrated in Figure 2. Any
failure will lead to great loss of production and have an effect on the safety and validity of
the system [4–6]. Therefore, the efficient fault diagnosis of axial piston pumps is greatly
valuable and worth in-depth exploration.

Fault diagnosis aims to determine the cause, position, type, and level of faults and
predict the present condition as well as evolutionary trends. It generally includes the
detection, isolation, and identification of faults. Fault diagnosis methods are mainly based
on signal, model, and knowledge [7–9]. Signal-based methods can decide the fault type
and nature by analyzing the time domain, frequency domain, and time–frequency features
of original signals. Model-based methods maintain inherent sensitivity to unknown faults,
and an accurate mathematical model of the object needs to be constructed for its faults
to be diagnosed. Methods based on knowledge achieve fault diagnosis by analyzing and
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processing the raw signals. Considering the influence of noise interference on bearing
vibration signals, the variational mode extraction method can be used for signal processing.
An improved one-dimensional convolutional neural network (1D CNN) was developed
for fault diagnosis of rolling bearings by introducing batch normalization, a self-attention
layer, and global average pooling [10]. Yu et al. developed a fusion method of raw signals
by combining modified empirical wavelet transform and the variance contribution rate [11].
The slight faults of hydraulic pumps can be accurately detected based on fused feature
information. By fusing wavelet packet transformation and a new tangent hyperbolic
fuzzy entropy measure, Zhou et al. proposed a new method to effectively achieve defect
identification of axial piston pumps [12]. Owing to the insufficient analysis of the dynamic
characteristics of piston pumps, Tang et al. investigated the effects of external loading and
health status by constructing a virtual prototype model [13]. Furthermore, loose slipper
failure was effectively detected for different loads. By acquiring the thermal images of a
brushless direct current electric motor, three different faulty states were investigated using
a new feature extraction method and deep learning methods. High accuracy of around
100% was obtained using the power of normalized image difference method and three
deep models [14].
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(c) deep-sea manned submersible, (d) deep-sea oil and gas exploitation. 
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Figure 1. Applications of hydraulic piston pumps. (a) Offshore drilling platform, (b) deep-sea drill,
(c) deep-sea manned submersible, (d) deep-sea oil and gas exploitation.
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Figure 2. Main friction pairs in an axial piston pump. (a) Piston ball head and slipper, (b) slipper and
swash plate, (c) piston and its hole, (d) cylinder and valve plate.
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Artificial intelligence is known as a progress of knowledge-based methods and has
boosted intelligence of mechanical fault diagnosis [15–17]. Kumar et al. used an artificial
neural network to carry out the intelligent detection of a centrifugal pump under varying
speeds. The method comprehensively learnt multisource feature information in acceler-
ation, pressure, and motor line current signals and promoted the accuracy of detecting
blockage failures [18]. To explore the causes of anomalies in wind turbines, Wang et al.
proposed a two-stage decomposition strategy for fault detection and identification. Multi-
head self-attention mechanism and position-wise feed-forward network were used. The
method presented superior identification performance compared to autoencoder-based
methods and had the attention of long short-term memory [19]. Yuan et al. explored an
intelligent index on the basis of an enhanced weighted square envelope spectrum and
solved the adaptive selection of multiwavelet basis functions. A support vector machine
was applied for weight optimization. The results for two bearing datasets indicated that
the method was effective for early machinery fault diagnosis [20]. Considering the large
amounts of unlabeled data in project practice, Shi et al. constructed a novel fault diagnosis
method based on deep hypergraph autoencoder embedding. The method combined the
strengths of the extreme learning machine autoencoder in computation and the powerful
capability of deep learning approaches in representation learning [21]. The method showed
superiority in accuracy and computation of fault diagnosis of rolling bearings and rotors.
Because of the severe distribution difference of samples in healthy and faulty conditions,
Liu constructed a diagnosis method by integrating a hierarchical extreme learning machine
and transfer learning. The method achieved fault identification of the gas path of an aero-
engine and showed strong generalization ability [22]. Taking into account the potential
complicated and heterogenous feature distribution difference, a strategy called interdo-
main decision discrepancy minimization was introduced to enhance the transfer learning
method [23]. Through experimental validation, it was revealed to be more accurate and
robust for fault diagnosis of bearings and gearbox datasets with small and massive samples.
Considering the small faulty samples in nuclear power plants, a new method based on
lightweight conditional generative adversarial network was developed for fault diagnosis
via sample augmentation. The performance of the method was validated using three
different public datasets [24]. Given the problems of sparse training data and the reliability
of the conclusions in present intelligent diagnosis methods, a new unsupervised learning
framework was established [25]. Contrastive learning was used to obtain the common
features between the same fault types and distinguish differences between different fault
types. A feature-assisted multibranch method was employed as a guidance for the model
to weaken the possible interference from operational parameters. The proposed method
was especially efficient for bearing fault diagnosis under different speeds. Zhao and Shen
proposed a novel diagnosis method based on semisupervised domain generalization for
unseen working conditions. Some new samples with pseudo labels were obtained on
the strength of the samples with labels, and a sample purification strategy based on the
entropy theory was introduced to enhance the restructured samples. Semisupervised
fault diagnosis was accomplished for the bearings and gearbox [26]. The method was
shown to be effective by analysis of the computation complexity and performance in noisy
environments. However, the automatic sample selection rate and its generalization for
different machines need to be further explored. To deal with unreliability from unseen
faults, an ensemble diagnosis method was developed by combining five different CNNs,
CNNs with different convolutional layers, ResNet, and inception network. The constructed
method could identify unknown faults, and was found to be trustworthy for fault diagnosis
of wind turbines and gearboxes [27]. To determine possible misdiagnosis, Zhou et al.
constructed a probabilistic Bayesian CNN framework for more accurate fault identification.
The method could complete diagnosis of visible bearing faults and was also verified to be
valid for unseen gear faults under normal and noisy conditions [28]. Due to the multiple
parameters and time-consuming model optimization, a multihierarchy compound network
compression approach was used for bearing fault diagnosis [29]. Unlike traditional CNNs,
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structured and unstructured pruning was carried out by removing unimportant filters in
the convolutional layer and inconsequential connections in the fully connected layer. The
parameters were reduced while achieving equal recognition accuracy. Based on denoising
time–frequency images, Chao et al. explored the identification of cavitation severity on a
high-speed aviation hydraulic pump using a CNN-based intelligent method [30]. Driven
by acoustic signals, Kumar et al. investigated fault identification of a centrifugal pump
employing a CNN for feature extraction and classification [31]. The experiments indicated
increased accuracy and powerful generalization capability.

Most of the present literature concerns the use of fault diagnosis methods for bearing,
gearing, and wind turbines. In an earlier study, a deep model named two-layer CNN was
constructed for fault diagnosis of axial piston pumps based on vibration signals [32]. In
this research, similar defect types and degree of damage of key friction pairs of axial piston
pumps were considered. A new deeper CNN network structure with five convolutional
layers was built for fault identification. The innovations are embodied in the following
three points.

(1) The structure of a hydraulic axial piston pump is composed of many friction pairs
and is very complex. This makes it difficult to achieve fault monitoring and diagnosis, and
it is much harder to accomplish intelligent diagnosis process. This research provides a new
intelligent method for fault diagnosis of the key friction pairs of axial piston pumps.

(2) Deep learning methods are employed for fault diagnosis of typical rotating ma-
chinery. However, the construction of the current deep models has shortcomings, such as
its time-consuming nature and inefficient manual parameter tuning. This research utilizes
the strengths of the Bayesian optimization algorithm and completes automatic learning of
the model hyperparameters.

(3) Many fault diagnosis methods are used for machinery vibration. Some are imple-
mented based on acoustic emission technology. Taking into account the pressure change
associated with component failure and easy monitoring of the signal, this study probes into
the monitored outlet pressure signals and dissects the hidden fault characteristics from a
special angle.

The rest of the paper is structured as follows. A brief introduction of CNN and
Bayesian optimization (BO) is provided in Section 2. Section 3 describes the implementation
of the proposed fault identification method. The experimental setup and data acquisition
are outlined in Section 4. In Section 5, the diagnosis accuracy and performance of the
method are analyzed and discussed. Finally, a conclusion is drawn and prospects for future
research are discussed in Section 6.

2. Theoretical Background
2.1. Convolutional Neural Network

A typical fully connected neural network can generally result in information loss,
and lots of parameters lead to overfitting. With the progress of deep models, CNN is
gradually exhibiting superiority in processing large-scale images [33–35]. In general, the
basic structure of a CNN consists of an input layer, convolution layer, pooling layer, fully
connected layer, and output layer. Convolution layer, pooling layer, and fully connected
(FC) layer are collectively called hidden layers. The connection between the convolutional
layer and the subsampled layer is a local connection. A fully connected mode is adopted
in the fully connected layer. A CNN presents three distinguished characteristics: local
connection, weight sharing, and downsampling. The local receptive field is a particular
structure that endows CNN with the function of local connection and weight sharing.

The calculation of convolutional layer is as follows [36],

Mm = A(I · Wm + bm) (1)
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where A denotes a kind of nonlinear activation function; m denotes the mth
feature map; I

is the input; · is used as the convolution operator; and the new feature map, weight, and
bias are denoted as M, W, and b, respectively.

The classification is achieved by the Softmax function, which can convert the output
values of multiclasses into probability distributions in the range [0, 1] and 1. It can be
expressed as follows [37]:

Output = So f tmax(Wnx + bn) =
e(Wnx+bn)

∑
p
1 e(Wo x+bo)

(2)

where the input of the output is presented as x; n denotes one class; and P is the number of
output nodes, also known as the number of categories.

Figure 3 presents the convolutional operation. The convolutional kernel, known as
a filter, conducts relative operation in the receptive field for feature extraction [38]. The
pooling layer shown in Figure 4 can reduce dimension and parameters. It can complete
downsampling using max-pooling or average pooling.
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To reduce the interdependence of the parameters and achieve sparsity of the network,
a rectified linear unit layer (ReLU) is usually used together with a convolutional layer [39].
The ReLU function is shown in Figure 5. The FC layer is located at the end of a CNN, and
each node is fully interconnected with the nodes in the front layer. It integrates the features
extracted from the previous layer and maps them to the label space. The structure of the
FC layer is presented in Figure 6.
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2.2. Bayesian Algorithm

Machine learning algorithms contain numerous parameters. The ones that can be
optimized through training are called parameters, such as the weight in neural networks,
while those that cannot be optimized by training are called hyperparameters, such as the
learning rate (LR), neurons per layer, and batch size. It should be noted that parameters are
updated, while hyperparameters are always constant in training. It is essential to adjust
the hyperparameters to acquire more efficient machine learning models [40,41].

There are two major challenges in hyperparameter optimization. First, it is a combina-
torial optimization problem that is hard to complete using gradient descent. Second, it is
time-consuming to evaluate a group of hyperparameters, which makes some evolutionary
algorithms inapplicable. Grid search aims to search for a suitable configuration by trying
all the possible combinations of a hyperparameter. Random search chooses the best con-
figuration via random combinations of the hyperparameters. Compared to grid search,
it can prevent unnecessary attempts at optimizing unimportant hyperparameters. The
limitation is that the two search-based methods ignore the relationship between different
hyperparameter combinations.

Bayesian optimization is an adaptive method for hyperparameter selection. BO can
predict the next possible combination that can bring the greatest benefits according to the
current tried groups [42]. BO includes prior information of parameters and shows fast
convergence. BO is aimed at optimal hyperparameter combinations that can obtain the
best model performance. BO uses two important functions: Gaussian process (GP) and
acquisition function. GP can effectively deal with nonlinear tasks and is able to fit the
objective function in optimization.



J. Mar. Sci. Eng. 2023, 11, 616 7 of 26

The following formula represents a multivariate Gaussian distribution [43,44]:

f (p1:k) ∼ N(a(p1:k), cθ(p1:k, p1:k)) (3)

where f signifies a smooth function, a finite input collection is expressed as p1:k, a(p1:k)j = a(pj)

presents a mean vector, cθ(p1:k, p1:k)ji = cθ(pj, pi) denotes covariance matrix, and the
parameterization is accomplished by θ.

The mean value and variance of samples are two critical statistics in Gaussian dis-
tribution. Exploitation refers to choosing points where the mean value is larger, while
exploration refers to selection of points where the variance is larger. BO aims to balance
exploitation and exploration. An appropriate point should be a tradeoff of exploitation and
exploration. Acquisition function is considered as a suitable choice for sampling. Among
many kinds of acquisition functions, expected improvement (EI) based on improvement is
easy and effective. It does not have many parameters and has simple computation. The
formula of EI is indicated as follows [44]:

αEI(D; σ, l) = E[M(0, y(D)− y(D∗))] (4)

where l denotes a dataset, y(D) presents the best objective that can be called the posterior
expected value, and y(D∗) shows the current best result or the maximum that has been
encountered so far.

EI combined with GP is as follows:

αEI(D; σ, l) = βt(D; θ, l)[xΦ(x) + φ(x)] (5)

where x = µt(D;σ,l)−y(D∗)
β(D;σ,l) , Φ denotes the cumulative distribution function, and φ presents

the probability density function that conforms to the standard normal distribution.
EI with stochastic noise can be expressed as follows:

αEI(D; σ, l) = β(D; σ, l)[tΦ(t) + φ(t)] (6)

where t = µt(D;σ,l)−µ(θ∗)
β(D;σ,l) , and µ(σ∗) signifies the most desired results that were obtained

by calculating the mean value.

3. Proposed Diagnosis Method

A refined CNN model was constructed based on the traditional AlexNet (T-AlexNet) [45].
The strategies of data transform and dropout [46] and Adam algorithm were employed
in the establishment of the model [47]. The proposed identification method combines a
modified CNN model and Bayesian algorithm. The flowchart is displayed in Figure 7,
while a more visualized account is depicted in Figure 8. The method can be divided into
two steps.

The first step is called signal-to-image, where raw pressure signals are acquired with
a pressure sensor. The obtained time series are converted into images using continuous
wavelet transform. The time–frequency images are input into the deep model followed by
data transform processing.

The second step is called feature extraction and identification, where a common
CNN model is built based on T-AlexNet with initial hyperparameters. The important
model hyperparameters are optimized using the Bayesian algorithm. LR, epoch, batch
size, dropout ratio, convolutional kernels, and other features are included. The best
hyperparameter groups are obtained through optimization, and the model achieves high
performance. The Bayesian optimized AlexNet (B-AlexNet) is used for adaptive failure
identification of an axial piston pump based on the above feature images.
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4. Design of the Experimental Bench

The bench of a swash plate plunger pump was used for fault simulation tests, as
shown as Figure 9. It contained a Y132M-4 motor and an MCY14-1B axial piston pump
with seven plungers. In the experiment, three types of sensors were installed: vibration
sensors in three different directions, pressure sensor, and sound sensor. Data from different
sensors were acquired. This research was conducted based on the analysis of pressure
signals. We performed sampling with a frequency of 10 kHz.

The nominal pressure of a piston pump is 31.5 MPa. The motor has a constant rotating
speed of 1470 r/min. The pressure sensor is an instrument of SYB-351 that can display
parameters. It can measure from 0 to 25 MPa. This is mainly because the actual working
pressure of the pump is generally lower than the nominal pressure. The pump outlet
pipeline is equipped with a pressure sensor to monitor the outlet pressure signal of the
pump. Five conditions were analyzed in the research: wear of the slipper (hx), wear of the
swash plate (xp), failure of the loose slipper (sx), wear of the central spring (th), and no
visible failure (zc). Different pressures and wear degrees were examined.
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Figure 9. Test bed of an axial piston pump.

5. Results and Discussion
5.1. Signal Analysis

The sample length in the experiment was 1024. The complex wavelet was taken as
the wavelet basis function. The scale sequence length was 256. The bandwidth and center
frequency were both 3. Figure 10 shows the time–frequency diagrams of the pressure signal.
The time–frequency images were used to build the dataset. Each fault type consisted of
1200 samples. The whole dataset was composed of 6000 images with the size of 256 × 256.
The images were resized into 224 × 224, and random horizontal flip was performed. The
training dataset accounted for 70%, and the remaining 30% was the test dataset. The
frequency changed with time under each condition. The features were similar, and different
fault modes were hard to identify. The visual information was almost the same in the states
of slipper wear and loose slipper failure. Establishing a learning model to mine the valid
information is important to complete fault classification of axial piston pumps.
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Figure 10. Time–frequency distributions of pressure signal via continuous wavelet transform.
(a) Normal condition, (b) wear of the slipper, (c) failure of the loose slipper, (d) wear of the swash
plate, (e) wear of the central spring.

5.2. Identification Results
5.2.1. Analysis of LR

The range of LR was set from 0.0001 to 0.0009. Then, optimization of the model was
conducted according to the decreasing principle of LR, which was 0.0009, 0.0008, 0.0006,
0.0004, 0.0002, and 0.0001 in the experiments. A small loss was found in low LR, as shown
in Figure 11. The lowest loss was found when LR was 0.0001. The rate of reduction became
slow with the increase in LR. The loss decreased to the minimum value fastest when the LR
was 0.0002. It fluctuated with the increase in epochs when the LR was 0.0009. Therefore,
it can be seen that a large LR is detrimental to the training of this model. The change in
test accuracy followed an opposite pattern compared to the loss. It reached lowest when
the LR was 0.0009 and highest when it was 0.0001. The accuracy curve presented good
convergence. Therefore, the initial LR was chosen as 0.0001.

The classification accuracy in 10 tests was analyzed for each LR. As can be seen from
Figure 12, the improved AlexNet (I-AlexNet) presented relative stability with an LR of
0.0001. The accuracy fluctuated to varying degrees with small or large LR, especially when
it was 0.0009, 0.0008, and 0.0004. Therefore, for pressure signals, the I-AlexNet showed
good stability as the LR was 0.0001.

The average accuracy for 10 tests under different LRs is shown in Figure 13. The
average identification accuracy of 10 experiments reached the highest level of 99.99% when
the LR was 0.0001. Combined with the above analysis on model convergence, the model
showed great performance under this LR.
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5.2.2. Analysis of Epoch

When analyzing the influence of epochs on fault classification, only the epochs were
changed and other parameters were fixed. The batch size was 32, and the initial value of
the size and number of convolution kernels was the same as that in Section 5.2.1. The initial
LR was selected as 0.0001. Ten independent trials were carried out by selecting the epoch
as 60. The average accuracy is shown in Figure 14.
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The training loss gradually decreased and the accuracy showed increasing trend with
increasing epochs. The test accuracy was slightly higher than that of the training samples
in less than 10 epochs. The accuracy exceeded 99% after more than 10 epochs. The loss was
stable after more than 30 epochs, indicating that the neural network had been trained to
convergence. Therefore, the epoch of 30 was found to be suitable.

5.2.3. Analysis of Dropout Rate

In the model training stage, the dropout strategy was employed in the full connection
layer. The range was set as 0.1 to 0.9 for the analysis of the model performance 0.1, 0.3,
0.5, 0.7, and 0.9, respectively. The accuracy curves under different dropout ratios are
shown in Figure 15. The loss showed an increasing tendency as the dropout ratio increased.
In contrast, the accuracy decreased gradually with the increase in dropout. The model
represented better convergence under small ratios with the increase in epoch, and a small
difference was found among the maximum accuracy of test samples under different ratios.
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The average accuracy of 10 trials under different dropout ratios is displayed in
Figure 16. There was no obvious difference in the classification accuracy with differ-
ent dropout ratios. The average accuracy was slightly higher when the dropout was 0.5.
Considering the convergence analysis and the most network structures to be obtained, the
dropout ratio of 0.5 was selected.
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5.2.4. Effect of Batch Size on Diagnostic Accuracy

The epoch was set as 30, and the batch sizes were 8, 16, 21, 32, 42, 56, 64, and 84. The
average accuracy of 10 independent repeated tests is shown in Figure 17. Little difference
in accuracy was found among different batch sizes, and the average was more than 99.9%.
When the batch size was 21, the classification accuracy reached 100%. The model achieved
good recognition for different fault categories of the axial piston pump.
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Figure 17. Relationship between classification accuracy and batch size.

As there was no significant difference in accuracy of models at different batch sizes,
the calculation time was analyzed. As can be seen from Table 1, when the batch size was
small, the calculation time was long. When it increased to more than 32, the time difference
of each epoch was smaller. For the present sample set, a smaller batch size was conducive
to improving the accuracy of fault classification. It was more beneficial to the judgment of
the final fault category. Therefore, the batch size of 32 was found to be suitable according
to comprehensive analysis of classification accuracy and calculation cost.
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Table 1. Computational time of different batch sizes in one epoch.

Batch
Size 1 2 3 4 5 6 7 8 9 10 Time (s)

8 16.16 16.08 16.17 16.27 16.10 16.20 16.02 16.20 16.16 16.12 16.15
16 12.12 12.93 12.01 11.99 12.37 12.53 12.23 12.15 12.00 12.06 12.24
21 11.94 12.04 11.77 11.82 11.79 11.89 11.75 11.77 11.72 11.74 11.82
32 10.40 10.33 10.38 10.34 10.63 10.513 10.37 10.47 10.47 10.58 10.45
42 10.09 10.02 10.08 10.15 10.05 10.20 10.03 10.13 9.94 10.19 10.09
56 9.78 9.90 10.05 10.06 9.80 9.89 9.93 9.92 10.09 10.09 9.95
64 9.97 9.82 9.97 9.78 9.77 9.70 9.94 9.96 10.28 9.90 9.91
84 9.99 9.83 9.54 9.69 10.28 10.26 10.02 9.91 9.79 9.97 9.93

5.2.5. Effect of Kernel Number on Diagnostic Accuracy

The epoch was set as 30 and the batch size was set as 32 in the experiment. Meanwhile,
the other parameters remained unchanged. Figure 18 depicts the accuracy at different
kernel ratios. The accuracy of the model was more than 99.9%. There was a slight increase
in accuracy with the increase in ratio. The accuracy achieved up to 99.97% when the ratio
was 2. There was no obvious change when the ratio increased to more than 3 times. Due to
the insignificant difference in accuracy with different kernel rates, the time consumption
was analyzed. As shown in Table 2, a small change in average time was found with the
increase in kernel number of C2.
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Figure 18. Classification accuracy by different kernel number.

Table 2. Computational time of different kernel numbers in one epoch.

C2/C1 1 2 3 4 5 6 7 8 9 10 Time
(s)

1 10.21 10.65 11.01 10.32 10.57 10.73 10.56 11.42 10.38 10.58 10.64
1.5 11.22 11.17 11.01 11.14 11.15 11.00 11.17 11.12 11.03 11.03 11.10
2 11.12 11.19 10.99 11.26 11.09 11.06 10.91 10.93 11.05 11.21 11.08

2.5 10.66 10.91 10.98 11.00 10.90 10.95 10.88 10.65 10.85 10.75 10.85
3 11.89 11.98 12.05 10.89 10.96 10.95 11.38 11.55 11.03 11.02 11.37

3.5 11.20 11.14 11.05 11.22 11.042 11.08 10.96 11.034 10.91 11.16 11.08
4 11.41 11.14 11.23 11.09 11.02 11.10 10.90 11.03 11.109 11.35 11.14

5.2.6. Effect of Kernel Size on Diagnostic Accuracy

The influence of kernel size on accuracy was also examined, as shown in Figure 19.
The highest test accuracy was obtained when the combination is k(9,5). The kernel size was
selected as 9 × 9 for C1 and 5 × 5 for C2.
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Figure 19. Classification accuracy by different kernel size.

As can be seen from the above analysis, different hyperparameters had different effects
on the fault diagnosis result. An obvious difference could be found from the analysis of
the LR and the kernel size. As for the other parameters, such as the epoch, the batch size,
and the kernel number, there was no significant influence on the diagnosis performance. In
particular, only a slight difference was observed with different dropout ratios.

5.2.7. Validation of Diagnostic Model

The optimal parameters obtained above were as follows: convolutional kernel, C1 and
C2; number, 48 and 96; size of k1, 9 × 9; size of k2, 5 × 5. The batch size was 32, the epoch
was 30, the dropout ratio was 0.5, and the initial LR was 0.0001. To verify the reliability
and stability of parameters, 10 independent tests were carried out. As shown in Figure 20,
the difference between the test and training accuracy was not significant, and the test
accuracy was above 99.9%. The stable results proved the effectiveness of the model structure
and parameters.
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Figure 20. Curves of training and testing accuracy in 10 trials.

Dimensionality reduction was achieved using t-stochastic neighbor embedding (t-SNE).
The visualization results are shown in Figure 21. The features of the five states in the original
input signal were evenly distributed, and it was difficult to complete identification of the
fault categories at this stage. The characteristics of different fault classes became much easier
to distinguish from the initial convolution layer to the final full connection layer.
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Figure 21. Visualization of feature representation via t-SNE. (a) Input data, (b) C1, (c) C3, (d) C5,
(e) FC2, (f) classifier layer.

There was some overlapping among the feature distributions of different fault types
when the model was shallow. The mixing phenomenon was more obvious through the
learning of C1, and it could be seen that misclassification of the different fault types existed
at this stage. The features of th gradually gathered after learning of C3, while the features
of sx and hx were mixed with each other. The features of each fault type showed an
aggregated trend by the extraction of C5. There was still some overlapping between the
feature distributions of th and sx. The features of the different categories in the FC layer
could be clearly identified. Although there was some distance among the features of the
same fault type, the features of one type were collected in the same area. The feature
representations of low level were transformed into those of high level. The identification
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and classification of the signal were effectively accomplished for an axial piston pump via
the feature learning of different network layers.

To explore the diagnostic performance of the proposed model, 10 independent tests
were conducted and different CNN models were used for comparative analysis. As can be
observed from Figure 22, the I-AlexNet converged better than other models. In the initial
stage of feature extraction, the accuracy of the LeNet-based model was lower. When the
epochs were more than 10, the accuracy of I-AlexNet was more than 99%, but the accuracy
of T-LeNet was still less than 90%. After 30 epochs of training, I-AlexNet, T-AlexNet,
3-CNN, and 3-CNN all achieved high classification accuracy.
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Figure 22. Curve of testing accuracy for different CNN models.

As can be seen from Table 3, the average accuracy of I-AlexNet reached 99.99%. The
average accuracy of T-LeNet was only 94.06%, while the other models achieved more
than 99%. Comparing VGG11 and deep network structure, the average accuracy and
standard deviation were the same. This further confirmed the recognition performance of
I-AlexNet. I-AlexNet showed good classification effect and stability in implementing fault
identification of an axial piston pump.

Table 3. Average classification accuracy of different CNN models.

Model Average Accuracy (%) Standard Deviation

T-LeNet 94.06 0.08442
I-LeNet 99.61 0.001624
3-CNN 99.92 0.001342
4-CNN 99.93 0.001135
VGG11 99.99 0.0002530

T-AlexNet 99.94 0.001386
I-AlexNet 99.99 0.0002530

The confusion matrix of one trial is shown in Figure 23. As for I-LeNet and T-LeNet,
the categories of recognition errors were mainly concentrated in hx, sx, and th. The
identification of xp was obviously improved for I-LeNet. The misrecognition for sx and
th was found in 3-CNN and 4-CNN. As a much deeper model, VGG11 achieved accurate
classification. Misclassification was observed for sx and th faults using the T-AlexNet
model. Among them, six samples in sx were misclassified as hx, and two samples in th
were misclassified as sx. The I-AlexNet model had no misclassification phenomenon for
any of the fault categories. The classification accuracy of each category is displayed in
Table 4. The precision of I-AlexNet for the five states of an axial piston pump reached
100%. The classification precision of sx and hx was improved by the model improvement
compared to the traditional model.
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Table 4. Precision of I-AlexNet and T-AlexNet for different fault types.

Fault Type I-AlexNet (%) T-AlexNet (%)

zc 100.0 100.0
xp 100.0 100.0
sx 100.0 99.4
hx 100.0 98.4
th 100.0 100.0

To investigate the classification effect of models on each fault category, different CNN
models were used for comparative analysis. As can be seen from Figure 24, the performance
of T-LeNet was significantly lower than that of other models. The other four models had
no significant difference in the classification results of zc, xp, and sx. However, for the
categories of hx and th, the classification effect of the I-AlexNet model showed a slight
improvement and was better than other models.
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Figure 24. Histogram of accuracy of different CNN models for each fault type.

The computing time of one independent test was taken for analysis, and the results
are depicted in Table 5. The mean computing time of the T-AlexNet model was 11.04 s,
while the time consumption of the I-AlexNet model was slightly more. Compared to
3-CNN, 4-CNN, and VGG11, the average time consumption of the I-AlexNet model was
significantly lower.

5.2.8. Optimization of Diagnostic Model

In the process of BO, some presetting hyperparameters of the I-AlexNet model were
the same as above. The selection of the range for each hyperparameter was based on
previous manual tuning. The parameter optimization is depicted in Figure 25. Table 6
shows the optimization results. The convergence speed of the improved AlexNet was faster
with BO. The classification accuracy reached 100% after more than 10 iterations.
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Table 5. Computational time of different CNN models in one epoch.

Model 1 2 3 4 5 6 7 8 9 10 Time
(s)

I-AlexNet 11.09 11.06 11.22 12.23 11.14 11.12 11.19 11.09 11.09 11.16 11.24
T-AlexNet 11.15 11.05 11.22 11.15 11.08 10.90 10.95 10.91 11.05 10.96 11.04
T-LeNet 4.14 4.38 4.13 4.08 4.28 4.18 4.18 4.28 4.16 4.06 4.19
I-LeNet 4.78 4.63 4.89 4.83 7.72 4.72 4.80 4.75 4.88 4.80 5.08
3-CNN 12.99 13.05 12.97 13.24 13.20 13.26 13.03 12.99 12.89 13.01 13.06
4-CNN 13.38 13.45 13.60 13.68 13.67 13.56 13.79 13.52 13.67 13.43 13.58
VGG11 31.85 32.05 32.12 31.25 31.27 31.67 31.43 31.19 31.02 32.18 31.60
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Figure 25. Classification accuracy with BO.

Table 6. The range and results of hyperparameter optimization.

Serial Number Hyperparameter Range Optimal Result

1 LR [0.0001, 0.001] 0.00012
2 Batch size [24, 56] 51
3 Epoch [20, 50] 33
4 Size of convolutional kernel (C1) [5, 9] 5
5 Size of convolutional kernel (C2) [3, 7] 5
6 Number of convolutional kernel (C1) [30, 60] 54
7 Number of convolutional kernel (C2) [80, 140] 97
8 Neurons of FC1 [1000, 1600] 1457
9 Neurons of FC2 [400, 800] 541
10 Dropout ratio [0.1, 0.9] 0.31

The hyperparameter combinations obtained by BO were used for model verification.
As can be seen from the training loss curve in Figure 26, the model had good convergent re-
sults. The accuracy trend of the train and test samples showed a high degree of coincidence.
The small difference indicated good stability of the B-AlexNet model. The confusion matrix
of one experiment and the classification precision are depicted in Figure 27 and Table 7,
respectively. The identification effects of I-AlexNet and B-AlexNet were superior to that
of T-AlexNet, and the precision reached up to 100%. The B-AlexNet especially showed an
improvement for sx and hx compared to T-AlexNet.
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The feature learning of B-AlexNet was investigated by employing t-SNE, and the
results are shown in Figure 28. The features in raw input are presented with scattered
points. It was difficult to find a certain principle between features of different faults.
Gradually, the features of the same fault type got together in clusters due to the learning
of convolutional layers. Five categories were clearly observed through the subsequent
fully connected layers and classifier layer. B-AlexNet could gain useful knowledge in the
time–frequency representations and achieve the classification of five typical states of an
axial piston pump.
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6. Conclusions

An integrated method was constructed based on a deep learning model and Bayesian
algorithm. The feature information hidden in the pressure signal was fully mined, and the
identification of typical faults of an axial piston pump was automatically accomplished.
Continuous wavelet transform was used for signal analysis and to maintain information on
both time and frequency. Bayesian algorithm adaptively learnt the critical hyperparameters
of the deep model by absorbing the merits of the Gaussian process to improve the model.
The following conclusions were obtained:

(1) Among the main selected hyperparameters, the learning rate showed the greatest
effect on the diagnosis results. The kernel number and kernel size also had considerable
influence. Compared to the above parameters, the epoch, dropout ratio, and batch size did
not have a remarkable effect.

(2) The experiments showed that improved AlexNet with manual tuning showed
better performance than the other contrastive models.

(3) By adopting Bayesian optimization algorithm, the proposed method named B-
AlexNet had a higher accuracy and stronger robustness. The average accuracy reached up
to 100% for five health states of an axial piston pump, and the precision for each fault type
was also enhanced.

(4) The identification performance of the diagnostic model was further validated by
feature distributions learned by different network layers. The constructed model can fuse
feature extraction and fault classification, and it requires less professional knowledge and
experience on signal processing.

In the future, further improvement to the Bayesian optimization algorithm will be
investigated taking into account the influence of different kernel functions in the Gaussian
process, and an improvement strategy based on noise addition will be developed. Moreover,
the generalizability of the diagnosis model will be explored by mining more comprehensive
information from multiple signals.
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