Exploring the Optimization of Synchromodal Transportation Path under Uncertainties
Abstract
:1. Introduction
1.1. Background
1.2. Innovation
2. Related Works
2.1. Research on the Optimization of Multimodal Transport
2.2. Research on the Uncertainty Problem in Multimodal Transport
2.3. Research on Synchromodal Transport
3. Problem Description
4. Synchromodal Transportation Routing Model under Uncertainties
4.1. Model Assumption
4.2. Mathematical Model
5. Solution Methodology
5.1. Defuzzification
5.2. Algorithm Choice
6. Numerical Experiments
6.1. Case Description
6.2. Results Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Sets: |
N Multimodal transport network. |
O, D Origin and destination of the transportation network. |
A Sets of node cities. |
M Sets of transportation modes. |
G Sets of transportation arcs. |
Parameters: |
The cargo volume between nodes i and i + 1. |
If the transportation mode j is used from point i to point i + 1, its value is 1, otherwise it is 0. |
The transportation distance from point i to point i + 1 using transportation mode j. |
The fee for unit distance using transportation mode j. |
If changing the transportation mode from j to k at point i, its value is 1, otherwise it is 0. |
The transshipment fee if changing the transportation mode from j to k at point i. |
The quantity of goods. |
The transportation time from point i to point i + 1 using transportation mode j. |
T Total transportation time of goods from O to D. |
The transportation speed using transportation mode j. |
The unit time storage fees that need to be paid if goods arrives at point D early. |
The unit time penalties that need to be paid if goods arrives at point D late. |
(E, L) The soft time window for goods delivery. |
Appendix A
%% Set GA Control Parameters |
GA.popsize = 200; % Population size |
GA.Dim = 11; % total noes - O - D = 13 - 2 |
GA.Ub = 3; % modes of transportation |
GA.pc = 0.7; % Crossover probabilities |
GA.pm = 0.005; % Mutation probabilities |
GA.pentcof = 100; % Penalty coefficient |
% GlobalMins = zeros(GA.MaxCycles, 1); |
% GlobalOptpop = zeros(GA.MaxCycles, 1+2*GA.Dim); %Optimal value update |
%% |
nMax = 120; |
indiNumber = 1000; |
%% Initialization |
pop = zeros(GA.popsize,1+2*GA.Dim); |
n = size(pop,2); %numbers of nodes |
obJvaL = zeros(GA.popsize, 1); |
for i = 1: GA.popsize |
pop(i,:) = popcreat(GA.Ub,GA.Dim); |
end |
%% Calculate the population fitness |
% indiFit = fitness(individual,cityCoor,cityDist); |
for i = 1: GA.popsize % objective function values |
[Objfit(i),~,~,totalTime] = Objfun(Modd,GA.Dim,pop(i,:),GA.pentcof); |
end |
[value,index] = min(Objfit); |
tourPbest = pop; |
tourGbest = pop(index,:); |
recordPbest = inf*ones(1,GA.popsize); |
recordGbest = Objfit(index); |
%% Find the optimal route scheme |
L_best = zeros(1,nMax); |
for N = 1:nMax |
N |
% Calculate the individual fitness |
for i = 1: GA.popsize |
[Objfit(i),~,~,totalTime] = Objfun(Modd,GA.Dim,pop(i,:),GA.pentcof); |
end |
% indiFit = fitness(individual,cityCoor,cityDist); |
% Update the current optimal and historical optimal |
for i = 1:GA.popsize |
if Objfit(i) < recordPbest(i) |
recordPbest(i) = Objfit(i); |
tourPbest(i,:) = pop(i,:); |
end |
if Objfit(i) < recordGbest |
recordGbest = Objfit(i); |
tourGbest = pop(i,:); |
end |
end |
[value,index] = min(recordPbest); |
recordGbest(N) = recordPbest(index); |
%% Cross operation |
% crosspop = zeros(size(pop)); |
% Select operation |
for i = 1:GA.popsize |
IX = find(Objfit~ = inf); |
prob = 1./Objfit(IX)/sum(1./Objfit(IX)); % Select probabilities |
cuLprob = cumsum(prob); |
selectionpop = zeros(size(pop)); |
% roulette selection |
% for k = 1:GA.popsize |
% indx = find( rand<cuLprob,1); |
% j = IX(indx); |
% selectionpop(k,:) = pop(j,:); |
% end |
% pop = selectionpop; |
xnew1 = pop(i,:); |
sec = tourPbest; |
% single-point crossover |
k = unidrnd(GA.Dim+1); |
kk = unidrnd(GA.Dim)+GA.Dim+1; |
temp = xnew1(k); |
xnew1(k) = sec(k); |
sec(k) = temp; |
temp = xnew1(kk); |
xnew1(kk) = sec(kk); |
% the new scheme is accepted if it is low in cost |
[obj,~,~,~] = Objfun(Modd,GA.Dim,xnew1,GA.pentcof); |
if Objfit(i) > obj |
pop(i,:) = xnew1; |
Objfit(i) = obj; |
end |
% cross with the best in the population. |
xnew1 = pop(i,:); |
sec = tourGbest; |
% single-point mutation |
xnew1(k) = unidrnd(GA.Ub); %Ub = 3; |
xnew1(kk) = unidrnd(2) − 1; %0.1 |
% the new scheme is accepted if it is low in cost |
[obj,~,~,~] = Objfun(Modd,GA.Dim,xnew1,GA.pentcof); |
if Objfit(i) > obj |
pop(i,:) = xnew1; |
Objfit(i) = obj; |
end |
end |
%% |
[value,index] = min(Objfit); |
L_best(N) = Objfit(index); |
tourGbest = pop(index,:); |
end |
References
- Reddy, T.; Khem Chand, B.; Velmurugan, S. Evaluation and augmentation of road-based urban public transport. Indian J. Transp. Manag. 1995, 19, 147–153. [Google Scholar]
- Zhai, C.-X.; Meng, C.; Sui, H.-P.; Li, K.-X. The Optimization Model Construction of Multimodal Transportation Route for Dangerous Goods. In Proceedings of the 3rd Annual International Conference on Management, Economics and Social Development (ICMESD 17), Beijing, China, 29–30 December 2017; pp. 302–306. [Google Scholar]
- Mi, X.; Mei, M.; Zheng, X. Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In Proceedings of the 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Porto, Portugal, 6–8 May 2019; pp. 512–516. [Google Scholar]
- Kaewfak, K.; Ammarapala, V.; Huynh, V.-N. Multi-objective optimization of freight route choices in multimodal transportation. Int. J. Comput. Intell. Syst. 2021, 14, 794–807. [Google Scholar] [CrossRef]
- Zhao, Y.; Ioannou, P.A.; Dessouky, M.M. Dynamic multimodal freight routing using a co-simulation optimization approach. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2657–2667. [Google Scholar] [CrossRef]
- Wang, Q.-Z.; Chen, J.-M.; Tseng, M.-L.; Luan, H.-M.; Ali, M.H. Modelling green multimodal transport route performance with witness simulation software. J. Clean. Prod. 2020, 248, 119245. [Google Scholar] [CrossRef]
- Li, H.; Su, L. Multimodal transport path optimization model and algorithm considering carbon emission multitask. J. Supercomput. 2020, 76, 9355–9373. [Google Scholar] [CrossRef]
- Delbart, T.; Molenbruch, Y.; Braekers, K.; Caris, A. Uncertainty in intermodal and synchromodal transport: Review and future research directions. Sustainability 2021, 13, 3980. [Google Scholar] [CrossRef]
- Sun, Y.; Hrušovský, M.; Zhang, C.; Lang, M. A time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestion. Complexity 2018, 2018, 8645793. [Google Scholar] [CrossRef]
- Lu, Y.; Lang, M.; Sun, Y.; Li, S. A fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approaches. IEEE Access 2020, 8, 27532–27548. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, F.-Y.; Yuan, X.-M.; Zhang, H.-Y. Low-Carbon Multimodal Transportation Path Optimization under Dual Uncertainty of Demand and Time. Sustainability 2021, 13, 8180. [Google Scholar] [CrossRef]
- SteadieSeifi, M.; Dellaert, N.P.; Nuijten, W.; Van Woensel, T.; Raoufi, R. Multimodal freight transportation planning: A literature review. Eur. J. Oper. Res. 2014, 233, 1–15. [Google Scholar] [CrossRef]
- van Riessen, B.; Negenborn, R.R.; Dekker, R. Synchromodal container transportation: An overview of current topics and research opportunities. In Proceedings of the Computational Logistics: 6th International Conference, ICCL 2015, Delft, The Netherlands, 23–25 September 2015; pp. 386–397. [Google Scholar]
- Giusti, R.; Manerba, D.; Bruno, G.; Tadei, R. Synchromodal logistics: An overview of critical success factors, enabling technologies, and open research issues. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 92–110. [Google Scholar] [CrossRef]
- Šakalys, R.; Sivilevičius, H.; Miliauskaitė, L.; Šakalys, A. Investigation and evaluation of main indicators impacting synchromodality using ARTIW and AHP methods. Transport 2019, 34, 300–311. [Google Scholar] [CrossRef]
- Larsen, R.B.; Atasoy, B.; Negenborn, R.R. Model predictive control for simultaneous planning of container and vehicle routes. Eur. J. Control 2021, 57, 273–283. [Google Scholar] [CrossRef]
- Guo, W.; Atasoy, B.; van Blokland, W.B.; Negenborn, R.R. A dynamic shipment matching problem in hinterland synchromodal transportation. Decis. Support Syst. 2020, 134, 113289. [Google Scholar] [CrossRef]
- Zhang, Y.; Atasoy, B.; Negenborn, R.R. Preference-based multi-objective optimization for synchromodal transport using Adaptive Large Neighborhood Search. Transp. Res. Rec. 2022, 2676, 71–87. [Google Scholar] [CrossRef]
- Van Riessen, B.; Mulder, J.; Negenborn, R.R.; Dekker, R. Revenue management with two fare classes in synchromodal container transportation. Flex. Serv. Manuf. J. 2021, 33, 623–662. [Google Scholar] [CrossRef]
- Batarlienė, N.; Šakalys, R. Mathematical model for cargo allocation problem in synchromodal transportation. Symmetry 2021, 13, 540. [Google Scholar] [CrossRef]
- Guo, W.; Atasoy, B.; Negenborn, R. Global synchromodal shipment matching problem with dynamic and stochastic travel times: A reinforcement learning approach. Ann. Oper. Res. 2022, 1–32. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X. Fuzzy programming approaches for modeling a customer-centred freight routing problem in the road-rail intermodal hub-and-spoke network with fuzzy soft time windows and multiple sources of time uncertainty. Mathematics 2019, 7, 739. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X. Optimization of multimodal transport route with mixed time windows. In Proceedings of the CICTP 2018: Intelligence, Connectivity, and Mobility, Beijing, China, 5–8 July 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 472–481. [Google Scholar]
- Qiwei, L.; Rongzhang, Z. Comparison and analysis of multimodal transport route optimization algorithms considering carbon emissions. Ind. Eng. Manag. 2022, 1–13. (In Chinese) [Google Scholar]
Authors (Year) | Reference | Cost | Time | Carbon Emission | Risk & Uncertainty | Methodology |
---|---|---|---|---|---|---|
Reddy (1995) | [1] | × | 0–1 PM | |||
Zhao et al. (2017) | [2] | × | × | double objectives linear PM | ||
Mi et al. (2019) | [3] | × | × | multimodal network OM | ||
Kaewfak et al. (2021) | [4] | × | × | × | 0–1 PM | |
Zhao et al. (2018) | [5] | × | × | dynamic OM | ||
Wang et al. (2020) | [6] | × | × | × | multimodal network simulation | |
Li et al. (2020) | [7] | × | × | × | multimodal network OM | |
Sun et al. (2018) | [9] | × | × | × | × | mixed integer non-linear OM |
Lu et al. (2020) | [10] | × | × | × | fuzzy mixed integer linear OM | |
Zhang et al. (2021) | [11] | × | × | × | × | hybrid robust stochastic OM |
Path | Distance | Path | Distance | Path | Distance |
---|---|---|---|---|---|
O–1 | (937, 842, -) | 3–5 | (1377, 1314, -) | 7–10 | (624, 636, -) |
O–2 | (340, 505, -) | 3–6 | (957, 810, -) | 8–9 | (162, 312, -) |
O–3 | (841, 967, -) | 5–7 | (432, 391, -) | 8–10 | (514, 451, -) |
1–4 | (542, 511, -) | 6–7 | (405, 1222, -) | 9–11 | (215, 217, -) |
1–5 | (866, 1047, -) | 4–8 | (649, 645, -) | 9–D | (352, 303, 320) |
1–6 | (1200, 1405, -) | 5–8 | (512, 1181, -) | 10–11 | (160, 253, -) |
2–4 | (1454, 1068, -) | 6–8 | (904, 418, -) | 11–D | (102, 81, -) |
2–5 | (1231, 845, 1159) | 5–9 | (-, -, 760) | ||
2–6 | (1355, 1243, -) | 7–9 | (665, 838, -) |
Modes | Velocity (km/h) | Transport Costs (¥/TEU·km) | Carbon Emission (kg/h) |
---|---|---|---|
Road | (40, 80, 90) | 2.4 | 6 |
Rail | (50, 60, 70) | 3.2 | 10 |
Water | (15, 30, 45) | 1.8 | 4 |
Transshipment | Transport Costs (¥/TEU) | Transport Time (h/TEU) | Carbon Emission (kg/TEU) |
---|---|---|---|
Rail–Road | 0.1 | 1 | 4.05 |
Road–Water | 0.3 | 1 | 4.25 |
Water–Rail | 0.4 | 2 | 4.65 |
Uncertain Situation | Costs (¥) | Time (h) | CE (kg) | Synchromodal Transportation Path | Optimal Costs (¥) | Optimal Time (h) | CE (kg) |
---|---|---|---|---|---|---|---|
Worst road | 24,481.5 | 67.583 | 361.93 | O→Road→2→Rail→5→Water→9→Rail→11→Rail→D | 15,600.3 | 64.883 | 382.88 |
Worst rail | 20,904.3 | 66.590 | 367.23 | O→Road→2→Rail→5→Water→9→Rail→11→Rail→D | 15,600.3 | 64.883 | 388.19 |
Worst water | 140,364.3 | 99.773 | 440.40 | O→Road→2→Rail→5→Road→8→Road→9→Water→D | 17,547.9 | 61.403 | 347.13 |
Time window change | 28,764.3 | 63.773 | 339.07 | O→Road→2→Rail→5→Water→9→Rail→D | 15,636.3 | 58.156 | 360.85 |
Destination change | 19,134.5 | 53.106 | 296.40 | O→Road→2→Water→5→Road→8→Road→9 | 15,994.8 | 61.620 | 263.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, H.; Deng, P. Exploring the Optimization of Synchromodal Transportation Path under Uncertainties. J. Mar. Sci. Eng. 2023, 11, 577. https://doi.org/10.3390/jmse11030577
Xu X, Wang H, Deng P. Exploring the Optimization of Synchromodal Transportation Path under Uncertainties. Journal of Marine Science and Engineering. 2023; 11(3):577. https://doi.org/10.3390/jmse11030577
Chicago/Turabian StyleXu, Xinyang, Haiyan Wang, and Pengzhu Deng. 2023. "Exploring the Optimization of Synchromodal Transportation Path under Uncertainties" Journal of Marine Science and Engineering 11, no. 3: 577. https://doi.org/10.3390/jmse11030577
APA StyleXu, X., Wang, H., & Deng, P. (2023). Exploring the Optimization of Synchromodal Transportation Path under Uncertainties. Journal of Marine Science and Engineering, 11(3), 577. https://doi.org/10.3390/jmse11030577