Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset of Tropical Cyclones
2.2. Composite Methods
3. Results
3.1. General TC Features in the NIO
3.2. Impact of TC on SSTs
3.3. Factors Determining TC-Induced Cooling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Kotal, S.D.; Bhowmik, P.K.; Kundu, A.K. A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of Bengal. J. Earth Syst. Sci. 2008, 117, 157–168. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Sun, L.; Zhou, C.; Hou, Y. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season. J. Mar. Syst. 2021, 217, 103509. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Yu, W.; Li, K.; Liu, Y. What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post-monsoon peak season? Atmos. Sci. Lett. 2016, 17, 148–154. [Google Scholar] [CrossRef]
- Vinodhkumar, B.; Busireddy, N.; Ankur, K.; Nadimpalli, R.; Osuri, K.K. On Occurrence of Rapid Intensification and Rainfall changes in Tropical Cyclones over the North Indian Ocean. Int. J. Climatol. 2021, 42, 714–726. [Google Scholar] [CrossRef]
- Krishnamohan, K.S.; Mohanakumar, K.; Joseph, P. V The influence of madden–Julian oscillation in the genesis of north Indian ocean tropical cyclones. Theor. Appl. Climatol. 2012, 109, 271–282. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Sunanda, N.; Martin, M.V.; Chakraborty, K. Tropical storms trigger phytoplankton blooms in the deserts of north Indian ocean. Environ. Sci. Atmos. 2022, 4, 404–415. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Y.; Zhang, W.-Z.; Ni, Q.-B.; Chai, F. Tropical cyclones related wind power on oceanic near-inertial oscillations. Geophysi. Res. Lett. 2023, 50, e2023GL105056. [Google Scholar] [CrossRef]
- Uddin, M.J.; Nasrin, Z.M.; Li, Y. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the north Indian ocean. Dyn. Atmos. Ocean. 2021, 93, 101196. [Google Scholar] [CrossRef]
- Dasol, K.; Ho, C.H.; Park, D.; Chan, J.; Jung, Y. The relationship between tropical cyclone rainfall area and environmental conditions over the subtropical oceans. J. Clim. 2018, 31, 4605–4616. [Google Scholar]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.I.; Chen, C.H.; Pun, I.F.; Liu, W.T.; Wu, C.C. Warm Ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, L03817. [Google Scholar] [CrossRef]
- Roxy, M.K.; Dasgupta, P.; Mcphaden, M.J.; Suematsu, T.; Kim, D. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature 2019, 575, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Toumi, R. Recent migration of tropical cyclones toward coasts. Science 2021, 371, 514–517. [Google Scholar] [CrossRef]
- Andreas, E.L.; Persson, P.O.G.; Hare, J.E. A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr. 2008, 38, 1581–1596. [Google Scholar] [CrossRef]
- Bhalachandran, S.; Nadimpalli, R.; Osuri, K.K.; Marks, F.D.; Gopalakrishnan, S.; Subramanian, S.; Mohanty, U.C.; Niyogi, D. On the processes influencing rapid intensity changes of tropical cyclones over the Bay of Bengal. Sci. Rep. 2019, 9, 3882. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.; Singh, V.; Ganadhi, M.K.; Roxy, M.K.; Emmanuel, R.; Kumar, U. Changing status of tropical cyclones over the north Indian Ocean. Clim. Dyn. 2021, 57, 3545–3567. [Google Scholar] [CrossRef]
- Singh, V.K.; Roxy, M.K. A review of ocean-atmosphere interactions during tropical cyclones in in the North Indian Ocean. Ear-Sci. Rev. 2022, 226, 103967. [Google Scholar] [CrossRef]
- Hart, R.E.; Maue, R.N.; Watson, M.C. Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Weather. Rev. 2007, 135, 3990–4005. [Google Scholar] [CrossRef]
- Sengupta, D.; Goddalehundi, B.R.; Anitha, D.S. Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos. Sci. Lett. 2008, 9, 1–6. [Google Scholar] [CrossRef]
- Lloyd, I.D.; Vecchi, G.A. Observational evidence for oceanic controls on hurricane intensity. J. Clim. 2010, 24, 1138–1153. [Google Scholar] [CrossRef]
- Neetu, S.; Lengaigne, M.; Vincent, E.M.; Vialard, J.; Durand, F.; Madec, G.; Samson, G.; Kumar, M.R.R. Influence of oceanic stratification on tropical cyclones-induced surface cooling in the Bay of Bengal. J. Geophys. Res. 2012, 117, C12020. [Google Scholar] [CrossRef]
- Chowdhury, R.R.; Prasanna, K.S.; Narvekar, J.; Chakraborty, A. Back-to-Back Occurrence of Tropical Cyclones in the Arabian Sea During October–November 2015: Causes and Responses. J. Geophys. Res.-Ocean. 2020, 125, e2019JC015836. [Google Scholar] [CrossRef]
- Sanabia, E.R.; Barrett, B.S.; Black, P.G.; Chen, S.; Cummings, J.A. Real-time upper-ocean temperature observations from aircraft during operational hurricane reconnaissance missions: AXBT demonstration project year one results. Weather Forecast. 2012, 28, 1404–1422. [Google Scholar] [CrossRef]
- Kim, H.S.; Lozano, C.; Tallapragada, V.; Iredell, D.; Sheinin, D.; Tolman, H.L.; Gerald, V.M.; Sims, J. Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Ocean. Technol. 2013, 31, 545–559. [Google Scholar] [CrossRef]
- Yablonsky, R.M.; Ginis, I. Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Weather Rev. 2013, 141, 997–1021. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Suprit, K.; Chiranjivi, J.; Bhaskar, T.U.; Ravichandran, M.; Shesu, R.V.; Rao, E.P.R. Observed oceanic response to tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dyn. 2014, 64, 325–335. [Google Scholar] [CrossRef]
- Yu, L.; McPhaden, M.J. Ocean preconditioning of Cyclone Nargis in the Bay of Bengal: Interaction between Rossby waves, Surface Fresh Waters, and Sea Surface Temperatures. J. Phys. Oceanogr. 2019, 41, 1741–1755. [Google Scholar] [CrossRef]
- Lin, I.; Wu, C.; Pun, I.; Ko, D. Upper-ocean thermal structure and the western north pacific category 5 typhoons. part I: Ocean features and the category 5 typhoons’ intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef]
- Sandery, P.A.; Brassington, G.B.; Craig, A.; Pugh, T. Impacts of ocean–atmosphere coupling on tropical cyclone intensity changes and ocean prediction in the Australian region. Mon. Weather Rev. 2010, 138, 2074–2091. [Google Scholar] [CrossRef]
- Blazhko, V.N.; Chefranov, S.G. Dissipative-centrifugal instability of tropical disturbances and the initial stage of tropical-cyclone development. Izv. Atmos. Ocean. Phys. 2005, 41, 537–544. [Google Scholar]
- Hoarau, K.; Bernard, J.; Chalonge, L. Intense tropical cyclone activities in the northern Indian ocean. Int. J. Climatol. 2012, 32, 1935–1945. [Google Scholar] [CrossRef]
- Albert, J.; Bhaskaran, P.K. Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Clim. Dyn. 2020, 55, 3343–3362. [Google Scholar] [CrossRef]
- Wang, Y. Composite of typhoon induced sea surface temperature and chlorophyll-a responses in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016243. [Google Scholar] [CrossRef]
- D’Asaro, E.; Black, P.; Centurioni, L.; Harr, P.; Jayne, S.; Lin, I.I.; Lee, C.; Morzel, J.; Mrvaljevic, R.; Niiler, P.; et al. Typhoon-ocean interaction in the western north Pacific: Part 1. Oceanography 2011, 24, 24–31. [Google Scholar] [CrossRef]
- D’Asaro, E.; Black, P.; Centurioni, L.; Chang, Y.; Chen, S.; Foster, R.C.; Graber, H.C.; Harr, P.; Hormann, V.; Lien, R.-C.; et al. Impact of typhoons on the ocean in the pacific. Bull. Am. Meteorol. Soc. 2014, 95, 1405–1418. [Google Scholar] [CrossRef]
- Zedler, S.E. Simulations of the ocean response to a hurricane: Nonlinear processes. J. Phys. Oceanogr. 2009, 39, 2618–2634. [Google Scholar] [CrossRef]
- Ali, S.A.; Mao, Z.; Wu, J.; Chen, X.; Zhu, Q.; Huang, H.; Gong, F.; Wang, T. Satellite Evidence of Upper Ocean Responses to Cyclone Nilofar. Atmosphere-Ocean 2020, 58, 13–24. [Google Scholar] [CrossRef]
- Fu, D.; Luan, H.; Pan, D.; Zhang, Y.; Wang, L.A.; Liu, D.; Ding, Y.; Li, X. Impact of two typhoons on the marine environment in the Yellow Sea and East China Sea. Chin J. Oceanol. Limnol. 2014, 34, 871–884. [Google Scholar] [CrossRef]
- Li, Z.; Yu, W.; Li, T.; Murty, V.S.N.; Tangang, F. Bimodal Character of Cyclone Climatology in the Bay of Bengal Modulated by Monsoon Seasonal Cycle. J. Clim. 2013, 26, 1033–1046. [Google Scholar] [CrossRef]
- Busireddy, N.K.R.; Ankur, K.; Osuri, K.K.; Sivareddy, S.; Niyogi, D. The response of ocean parameters to tropical cyclones in the Bay of Bengal. Q. J. R. Meteorol. Soc. 2019, 145, 3320–3332. [Google Scholar] [CrossRef]
- Rajasree, V.; Kesarkar, A.P.; Bhate, J.N.; Umakanth, U.; Singh, V.; Varma, T.H. Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013). J. Geophys. Res. Atmos. 2016, 121, 8949–8982. [Google Scholar] [CrossRef]
- Osuri, K.K.; Nadimpalli, R.; Mohanty, U.C.; Niyogi, D. Prediction of rapid intensification of tropical cyclone Phailin over the Bay of Bengal using the HWRF modelling system. Q. J. R. Meteorol. Soc. 2016, 143, 678–690. [Google Scholar] [CrossRef]
- Chacko, N. Effect of Cyclone Thane in the Bay of Bengal Explored Using Moored Buoy Observations and Multi-platform Satellite Data. J. Indian Soc. Remote Sens. 2018, 46, 821–828. [Google Scholar] [CrossRef]
- Mohapatra, M.; Bandyopadhyay, B.K.; Tyagi, A. Best track parameters of tropical cyclones over the North Indian Ocean: A review. Nat. Hazards 2012, 63, 1285–1317. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Z.; Li, H.; Li, Z.; Wu, X.; Sun, C.; Xu, J. Manual of Global Ocean Argo Gridded Data Set (BOA_Argo) (Version 2019). 2020, p. 14. Available online: http://argo.ucsd.edu/wp-content/uploads/sites/361/2020/07/User_Manual_BOA_Argo-2020.pdf (accessed on 1 June 2023).
- Duan, W.; Yuan, J.; Duan, X.; Feng, D. Seasonal Variation of Tropical Cyclone Genesis and the Related Large-Scale Environments: Comparison between the Bay of Bengal and Arabian Sea Sub-Basins. Atmosphere 2021, 12, 1593. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Zhou, F.; Chai, F. Frontal variability and its impact on chlorophyll in the Arabian Sea. J. Mar. Syst. 2021, 218, 103545. [Google Scholar] [CrossRef]
- Dare, R.A.; Mcbride, J.L. Sea surface temperature response to tropical cyclones. Mon. Weather Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Akhila, R.S.; Martin, M.V.; Girishkumar, M.S.; Mohapatra, M.; Sarojini, B.B.; Mogensen, K.; Sunanda, N.; Chakraborty, A. Tropical cyclone-induced cold wakes in the northeast Indian ocean. Environ. Sci. Atmos. 2022, 2, 404. [Google Scholar] [CrossRef]
- Chen, C.; Tang, D. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea. Int. J. Remote Sens. 2012, 33, 7444–7457. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, R.; Chen, D.; Liu, X.; He, H.; Tang, Y.; Ke, D.; Shen, Z.; Li, J.; Xie, J.; et al. Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2014, 122, 7154–7171. [Google Scholar] [CrossRef]
- Lengaigne, M.; Neetu, S.; Samson, G.; Vialard, J.; Krishnamohan, K.S.; Masson, S.; Jullien, S.; Suresh, I.; Menkes, C.E. Influence of air–sea coupling on Indian ocean tropical cyclones. Clim. Dyn. 2018, 52, 577–598. [Google Scholar] [CrossRef]
- Vidya, P.J.; Das, S.; Mani, M.R. Contrasting Chl-a responses to the tropical cyclone’s thane and Phailin in the Bay of Bengal. J. Mar. Sys. 2017, 165, 103–114. [Google Scholar]
- Chinta, V.; Deo, A.A. Study of upper ocean parameters during passage of tropical cyclones over Indian seas. Int. J. Remote Sens. 2019, 40, 4683–4723. [Google Scholar]
- Vincent, E.M.; Lengaigne, M.; Madec, G.; Vialard, J.; Samson, G.; Jourdain, N.C.; Menkes, C.E.; Jullien, S. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res. 2012, 117, C02020. [Google Scholar] [CrossRef]
- Price, J.F.; Morzel, J.; Niiler, P.P. Warming of sst in the cool wake of a moving hurricane. J. Geophys. Res. 2008, 113, C07010. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J.; Sriver, R.L. Global representation of tropical cyclone-induced short-term ocean thermal changes using argo data. Ocean Sci. 2015, 11, 719–741. [Google Scholar] [CrossRef]
- Jansen, M.F.; Ferrari, R.; Mooring, T.A. Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett. 2010, 37, 202–217. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Ravichandran, M.; Mcphaden, M.J. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. J. Geophys. Res. Ocean. 2013, 118, 2426–2437. [Google Scholar] [CrossRef]
- Jarugula, S.L.; McPhaden, M.J. Ocean mixed layer response to two post-monsoon cyclones in the Bay of Bengal in 2018. J. Geophys. Res. Ocean. 2022, 127, e2022JC018874. [Google Scholar] [CrossRef]
- Jian, L.; Lei, Y.; Shu, Y.; Wang, D. Temperature Inversion in the Bay of Bengal Prior to the Summer Monsoon Onsets in 2010 and 2011. Atmos. Oceanic Sci. Lett. 2012, 5, 290–294. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Sengupta, D.; D’Asaro, E.; Venkatesan, R.; Ravichandran, M. Response of the Salinity-Stratified Bay of Bengal to Cyclone Phailin. J. Phys. Oceanogr. 2019, 49, 121–1140. [Google Scholar] [CrossRef]
- Rumyantseva, A.; Henson, S.; Martin, A.; Thompson, D.F.; Damerell, G.M.; Kaiser, J.; Heywood, K.J. Phytoplankton spring bloom initiation: The impact of atmospheric forcing and light in the temperate North Atlantic Ocean. Prog. Oceanogr. 2019, 178, 102202. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Tian, X.; Lin, S.; Chen, S.; Yu, J.; Chai, F. Upper Ocean Structure Determines the Contrasting Typhoon-Induced Chlorophyll-a Responses in the Northwest Pacific. Geophys. Res. Lett. 2023, 50, e2023GL102930. [Google Scholar] [CrossRef]
- Pothapakula, P.K.; Osuri, K.K.; Pattanayak, S.; Mohanty, U.C.; Prasad, S.K. Observational perspective of SST changes during life cycle of tropical cyclones over Bay of Bengal. Nat. Hazards 2016, 88, 1769–1787. [Google Scholar] [CrossRef]
- Tsai, Y.; Chern, C.S.; Wang, J. Numerical study of typhoon-induced ocean thermal content variations on the northern shelf of the South China Sea. Cont. Shelf Res. 2012, 42, 64–77. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Lee, M.A.; Chern, C.S. Typhoon-induced Ocean responses off the southwest coast of Taiwan. Ocean Dyn. 2014, 64, 1569–1581. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Clim. 2013, 26, 3745–3766. [Google Scholar] [CrossRef]
Category | IMD Intensity Scale | MSW (m/s) |
---|---|---|
1 | Depression (D) | MSW < 14 |
2 | Deep depression (DD) | 14 ≤ MSW < 17 |
3 | Cyclone storm (CS) | 17 ≤ MSW < 24 |
4 | Severe cyclone storm (SCS) | 24 ≤ MSW < 32 |
5 | Very severe cyclone storm (VSCS) | 32 ≤ MSW < 46 |
6 | Extremely strong cyclone storm (ESCS) | 46 ≤ MSW < 61 |
7 | Super cyclone (SC) | MSW ≥ 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Lv, H.; Tan, S.; Wang, Y. Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean. J. Mar. Sci. Eng. 2023, 11, 2196. https://doi.org/10.3390/jmse11112196
Yu J, Lv H, Tan S, Wang Y. Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean. Journal of Marine Science and Engineering. 2023; 11(11):2196. https://doi.org/10.3390/jmse11112196
Chicago/Turabian StyleYu, Jianmin, Haibin Lv, Simei Tan, and Yuntao Wang. 2023. "Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean" Journal of Marine Science and Engineering 11, no. 11: 2196. https://doi.org/10.3390/jmse11112196
APA StyleYu, J., Lv, H., Tan, S., & Wang, Y. (2023). Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean. Journal of Marine Science and Engineering, 11(11), 2196. https://doi.org/10.3390/jmse11112196