Failure Behavior and Surrounding Soil Stress Responses of Suction Anchor in Low-Strength Muddy Clay
Abstract
:1. Introduction
2. Design and Implementation of Centrifugal Model Test
2.1. Model Scale and Main Design Scheme
2.2. Test Equipment and Preparation
2.3. Geotechnical Centrifuge Operation and Model Loading
3. Loading Failure Process and Mechanical Behavior of Suction Anchor
3.1. The 90° Vertical Pulling Test
3.2. The 69° Inclined Pulling Test
3.3. The 51° Inclined Pulling Test
3.4. Influence of Loading Direction on Bearing Capacity of Suction Anchor
3.5. Numerical Modeling on the Prototype Suction Anchor Used in the Centrifugal Model Test
4. Interaction Mechanism between Suction Anchor and Soil
4.1. Mechanical Behaviors of Soil with Suction Anchor Loading
4.2. Distribution Characteristics of Soil Pressures around Suction Anchors
4.3. Failure Mechanism of Suction Anchors in Muddy Clay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arany, L.; Bhattacharya, S. Simplified load estimation and sizing of suction anchors for spar buoy type floating offshore wind turbines. Ocean Eng. 2018, 159, 348–357. [Google Scholar] [CrossRef]
- Wang, M.; Nacci, V.; Demars, K. Behavior of underwater suction anchor in soil. Ocean Eng. 1975, 3, 47–62. [Google Scholar] [CrossRef]
- Dyvik, R.; Andersen, K.H.; Hansen, S.B.; Christophersen, H.P. Field tests of anchors in clay. I: Description. J. Geotech. Geoenviron. 1993, 119, 1515–1531. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Peng, J. A Unified Model for Analyzing Comprehensive Behaviors of Deepwater Anchors. J. Mar. Sci. Eng. 2021, 9, 913. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, H.; Kim, Y.-T. Finite element analysis of the holding capacity of shallow suction caisson anchors. Mar. Georesour. Geotechnol. 2015, 33, 33–44. [Google Scholar] [CrossRef]
- Wang, P.; Lu, H.; Wang, M.; Nagarajaiah, S.; Du, X. Experimental and numerical investigations on seismic responses of wind turbine structures with amplifying damping transfer system. Soil Dyn. Earthq. Eng. 2023, 175, 108277. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zhang, H.; Yuan, C.; Yang, H. Experimental Study on 2D Motion Characteristics of Submerged Floating Tunnel in Waves. J. Mar. Sci. Eng. 2020, 8, 123. [Google Scholar] [CrossRef]
- Wang, C. Nonlinear waves and wave-structure interactions in marine hydrodynamics—Recent progress. Sci. China Technol. Sci. 2012, 55, 3253–3256. [Google Scholar] [CrossRef]
- Zdravkovic, L.; Potts, D.; Jardine, R. A parametric study of the pull-out capacity of bucket foundations in soft clay. Geotechnique 2001, 51, 55–67. [Google Scholar] [CrossRef]
- Bang, S.; Jones, K.; Kim, Y.S.; Cho, Y. Horizontal capacity of embedded suction anchors in clay. Ocean Eng. 2011, 133, 011104. [Google Scholar] [CrossRef]
- Du, J.; Du, S.; Wang, Z. A Comparison of Pull-out Capacity of Suction Anchors in Clay and Sand. Appl. Mech. Mater. 2014, 614, 613–617. [Google Scholar] [CrossRef]
- Koh, K.X.; Hossain, M.S.; Kim, Y. Installation and monotonic pullout of a suction caisson anchor in calcareous silt. J. Geotech. Geoenviron. Eng. 2017, 143, 04016098. [Google Scholar] [CrossRef]
- Sassi, K.; Zehzouh, S.; Blanc, M.; Thorel, L.; Cathie, D.; Puech, A.; Colliat-Dangus, J.L. Effect of seabed trenching on the holding capacity of suction anchors in soft deepwater Gulf of Guinea clays. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018. [Google Scholar]
- Wang, X.; Yang, X.; Zeng, X. Lateral capacity assessment of offshore wind suction bucket foundation in clay via centrifuge modelling. J. Renew. Sustain. Energy 2017, 9, 033308. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, X. Undrained bearing capacity of suction caissons for offshore wind turbine foundations by numerical limit analysis. Mar. Georesour. Geotechnol. 2016, 34, 252–264. [Google Scholar] [CrossRef]
- Monajemi, H.; Razak, H.A. Finite element modeling of suction anchors under combined loading. Mar. Struct. 2009, 22, 660–669. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Hu, C.; Wang, S.; Liu, J. Accumulation of Pore Pressure in a Soft Clay Seabed around a Suction Anchor Subjected to Cyclic Loads. J. Mar. Sci. Eng. 2019, 7, 308. [Google Scholar] [CrossRef]
- Shen, K.; Wang, L.; Guo, Z.; Jeng, D.S. Numerical investigations on pore-pressure response of suction anchors under cyclic tensile loadings. Eng. Geol. 2017, 227, 108–120. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, P.; Li, N.; Liu, Z.; Zhou, Y. Predicting the cyclic behaviour of suction anchors based on a stiffness degradation model for soft clays. Comput. Geotech. 2020, 122, 103552. [Google Scholar] [CrossRef]
- Randolph, M.; House, A. Analysis of suction caisson capacity in clay. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2002. [Google Scholar]
- Andersen, K.H.; Dyvik, R.; Schrøder, K.; Hansteen, O.E.; Bysveen, S. Field tests of anchors in clay II, Predictions and interpretation. J. Geotech. Eng. 1993, 119, 1532–1549. [Google Scholar] [CrossRef]
- Clukey, E.C.; Morrison, M.J.; Gamier, J.; Corte, J.F. The response of suction caissons in normally consolidated TLP loading conditions. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 1995. [Google Scholar]
- Chen, W.; Randolph, M.F. Uplift Capacity of Suction Caissons under Sustained and Cyclic Loading in Soft Clay. J. Geotech. Geoenviron. Eng. 2007, 133, 1352–1363. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.; Yan, Y.; Jostad, H.P. Effects of tension gap on the holding capacity of suction anchors. Mar. Struct. 2020, 69, 102679. [Google Scholar] [CrossRef]
- Aubeny, C.; Murff, J.D. Simplified limit solutions for the capacity of suction anchors under undrained conditions. Ocean Eng. 2005, 32, 864–877. [Google Scholar] [CrossRef]
- Jones, K.D.; Bang, S.; Cho, Y. Pullout capacity of embedded suction anchors in sand. Ocean Eng. 2007, 34, 2107–2114. [Google Scholar] [CrossRef]
- Koh, K.X.; Wang, D.; Hossain, M.S. Numerical simulation of caisson installation and dissipation in kaolin clay and calcareous silt. Bull. Eng. Geol. Environ. 2018, 77, 953–962. [Google Scholar] [CrossRef]
- Yang, Q.; Pan, G.; Liu, H.; Wang, Q. Bearing capacity of offshore umbrella suction anchor foundation in silty soil under varying loading modes. Mar. Georesour. Geotechnol. 2018, 36, 781–794. [Google Scholar] [CrossRef]
- Cheng, L.; Hossain, M.S.; Hu, Y.; Kim, Y.H.; Ullah, S.N. Failure envelope of suction caisson anchors subjected to combined loadings in sand. Appl. Ocean Res. 2021, 114, 102801. [Google Scholar] [CrossRef]
- Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng. 2021, 9, 886. [Google Scholar] [CrossRef]
- Saue, M.; Aas, P.M.; Andersen, K.H.; Solhjell, E. Installation of suction anchors in layered soils. In Proceedings of the Offshore Site Investigation Geotechnics 8th International Conference Proceeding, Oslo, Norway, 12–14 September 2017; pp. 507–515. [Google Scholar]
- Utsunomiya, T.; Sekita, K.; Kita, K.; Sato, I. Demonstration Test for Using Suction Anchor and Polyester Rope in Floating Offshore Wind Turbine. In Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar]
- Wang, J.; Li, S. Analysis procedure of the cyclic bearing capacity for suction anchors in soft clays. Mar. Georesour. Geotechnol. 2015, 33, 546–555. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, A.; Li, G. Model tests and finite element analysis for the cyclic deformation process of suction anchors in soft clays. Ocean Eng. 2018, 151, 329–341. [Google Scholar] [CrossRef]
- Lee, J.; Do, J. Effects of the Installation Method, Loading Condition, and Failure Mechanism on the Behavior of Suction Piles under Monotonic Horizontal Loading. J. Mar. Sci. Eng. 2021, 9, 1333. [Google Scholar] [CrossRef]
- Andersen, K.H.; Jeanjean, P.; Luger, D.; Jostad, H.P. Centrifuge tests on installation of suction anchors in soft clay. Ocean Eng. 2005, 32, 845–863. [Google Scholar] [CrossRef]
- Kim, S.; Choo, Y.W.; Kim, J.H.; Kim, D.S.; Kwon, O. Pullout resistance of group suction anchors in parallel array installed in silty sand subjected to horizontal loading—Centrifuge and numerical modeling. Ocean Eng. 2015, 107, 85–96. [Google Scholar] [CrossRef]
- Zhu, B.; Dai, J.; Kong, D.; Feng, L.; Chen, Y. Centrifuge modelling of uplift response of suction caisson groups in soft clay. Can. Geotech. J. 2020, 57, 1294–1303. [Google Scholar] [CrossRef]
- Zhang, Y.; He, K.; Li, X.; Ye, J. Centrifuge Shaking Table Test on the Seismic Dynamics of Revetment Breakwater and a Nearby Aircraft Runway Built on Reclaimed Coral Sand Foundation. J. Mar. Sci. Eng. 2023, 11, 41. [Google Scholar] [CrossRef]
- Reese, L.C.; Beard, R.M. A design method for an anchor pile in a mooring system. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 28 April–1 May 1973. [Google Scholar]
- Bhattacharya, P. Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay. Geomech. Eng. 2017, 13, 825–844. [Google Scholar]
- Ng, C.W.W.; Shi, J.; Hong, Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand. Can. Geotech. J. 2013, 50, 874–888. [Google Scholar] [CrossRef]
Parameters | Units | Model/Prototype |
---|---|---|
Acceleration | m/s2 | n/1 |
Linear dimensions | m | 1/n |
Stress | kPa | 1/1 |
Strain | - | 1/1 |
Density | Kg/m3 | 1/1 |
Force | N | 1/n2 |
Bending moment | N·m | 1/n3 |
Axial rigidity | N | 1/n2 |
Flexural rigidity | N·m2 | 1/n4 |
Consolidation time | s | 1/n2 |
Permeability coefficient | m/s | n/1 |
Viscosity coefficient | Pa·s | 1/1 |
Seepage time | s | 1/n2 |
Diameter D | Length L | Thickness t | Material | Elastic Modulus | Similarity Ratio | |
---|---|---|---|---|---|---|
Prototype suction anchor | 4 m | 20 m | 40 mm | steel | 210 GPa | 1:50 |
Model suction anchor | 80 mm | 400 mm | 0.8 mm |
Test Group | Size (L × D × t) | 90° Loading | 69° Loading | 51° Loading |
---|---|---|---|---|
Model suction anchor | 400 × 80 × 0.8 mm | 1.007 kN | 1.181 kN | 1.458 kN |
Prototype suction anchor | 20 × 4 × 0.04 m | 2517.5 kN | 2952.5 kN | 3645.0 kN |
Muddy Clay Soil | Suction Anchor | |||||
---|---|---|---|---|---|---|
Parameter | c/kPa | φ/° | E/MPa | ν | E/GPa | ν |
Value | 8.75 | 3.57 | 0.85 | 0.50 | 205 | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Liu, X.; Liu, X.; Zuo, D.; An, X.; Yu, L. Failure Behavior and Surrounding Soil Stress Responses of Suction Anchor in Low-Strength Muddy Clay. J. Mar. Sci. Eng. 2023, 11, 2190. https://doi.org/10.3390/jmse11112190
Luo J, Liu X, Liu X, Zuo D, An X, Yu L. Failure Behavior and Surrounding Soil Stress Responses of Suction Anchor in Low-Strength Muddy Clay. Journal of Marine Science and Engineering. 2023; 11(11):2190. https://doi.org/10.3390/jmse11112190
Chicago/Turabian StyleLuo, Jiwei, Xiaoqiang Liu, Xianpeng Liu, Dianjun Zuo, Xiaoyu An, and Liqiang Yu. 2023. "Failure Behavior and Surrounding Soil Stress Responses of Suction Anchor in Low-Strength Muddy Clay" Journal of Marine Science and Engineering 11, no. 11: 2190. https://doi.org/10.3390/jmse11112190
APA StyleLuo, J., Liu, X., Liu, X., Zuo, D., An, X., & Yu, L. (2023). Failure Behavior and Surrounding Soil Stress Responses of Suction Anchor in Low-Strength Muddy Clay. Journal of Marine Science and Engineering, 11(11), 2190. https://doi.org/10.3390/jmse11112190