Impact of Correction Target Selection on Long-Term Spectral Nudging in Luzon Strait and Its Adjacent Regions
Abstract
:1. Introduction
2. Method and Application Scenario Analysis
2.1. Spectral Nudging
2.2. Application Scenario Analysis
3. Model and Data
3.1. Model Configuration
3.2. Numerical Experiments and Correction Target
3.3. Observation Data
4. Impact of Correction Target Selection on Large-Scale
4.1. Direct Impact
4.2. Indirect Impact
5. Impact on Meso- and Small-Scale Variations
5.1. Subsurface Temperature and Salinity
5.2. Sea Surface Height
5.3. Kuroshio Intrusion in Luzon Strait
5.4. Multiscale Energy Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Flierl, G.R.; Wunsch, C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr. 2014, 44, 2336–2352. [Google Scholar] [CrossRef]
- Von Storch, J.S.; Eden, C.; Fast, I.; Haak, H.; Hernández-Deckers, D.; Maier-Reimer, E.; Marotzke, J.; Stammer, D. An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr. 2012, 42, 2185–2205. [Google Scholar] [CrossRef]
- Jean-Michel, L.; Eric, G.; Romain, B.B.; Gilles, G.; Angélique, M.; Marie, D.; Clément, B.; Mathieu, H.; Olivier, L.G.; Charly, R.; et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Wu, L.; Lin, X.; Chang, P.; Danabasoglu, G.; Wang, Z.; Yu, X.; Hu, H.; Ma, X.; et al. A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation. Sci. Bull. 2020, 65, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Deleersnijder, E.; Lermusiaux, P.F.J. Multi-scale modeling: Nested-grid and unstructured-mesh approaches. Ocean Dyn. 2008, 58, 335–336. [Google Scholar] [CrossRef]
- Henshaw, W.D.; Kreiss, H.O.; Yström, J. Numerical experiments on the interaction between the large- and small-scale motions of the Navier-stokes equations. Multiscale Model. Simul. 2003, 1, 119–149. [Google Scholar] [CrossRef]
- Sun, C.; Feng, M.; Matear, R.J.; Chamberlain, M.A.; Craig, P.; Ridgway, K.R.; Schiller, A. Marine downscaling of a future climate scenario for Australian boundary currents. J. Clim. 2012, 25, 2947–2962. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, S.; Tian, J.; Zhang, Z.; Gan, J.; Wu, C.R. An Examination of Circulation Characteristics in the Luzon Strait and the South China Sea Using High-Resolution Regional Atmosphere-Ocean Coupled Models. J. Geophys. Res. Oceans 2020, 125, e2020JC016253. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Errico, R.M.; Giorgi, F.; Bates, G.T. A regional climate model for the western United States. Clim. Chang. 1989, 15, 383–422. [Google Scholar] [CrossRef]
- Pham, V.S.; Hwang, J.H.; Ku, H. Optimizing dynamic downscaling in one-way nesting using a regional ocean model. Ocean Model. 2016, 106, 104–120. [Google Scholar] [CrossRef]
- Katavouta, A.; Thompson, K.R. Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean. Ocean Model. 2016, 104, 54–72. [Google Scholar] [CrossRef]
- Von Storch, H.; Langenberg, H.; Feser, F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather Rev. 2000, 128, 3664–3673. [Google Scholar] [CrossRef]
- Thompson, K.R.; Wright, D.G.; Lu, Y.Y.; Demirov, E. A simple method for reducing seasonal bias and drift in eddy resolving ocean models. Ocean Model. 2006, 13, 109–125. [Google Scholar] [CrossRef]
- Donohue, S.M.; Stacey, M.W. Simulation of mixed layer depth in the northeast pacific utilizing spectral nudging. J. Phys. Oceanogr. 2011, 41, 641–653. [Google Scholar] [CrossRef]
- Pei, Q.; Sheng, J.; Ohashi, K. Numerical Study of Effects of Winds and Tides on Monthly-Mean Circulation and Hydrography over the Southwestern Scotian Shelf. J. Mar. Sci. Eng. 2022, 10, 1706. [Google Scholar] [CrossRef]
- Wang, P.; Bernier, N.B.; Thompson, K.R.; Kodaira, T. Evaluation of a global total water level model in the presence of radiational S2 tide. Ocean Model. 2021, 168, 101893. [Google Scholar] [CrossRef]
- Urrego-Blanco, J.; Sheng, J. Interannual variability of the circulation over the eastern Canadian shelf. Atmos. Ocean 2012, 50, 277–300. [Google Scholar] [CrossRef]
- Zhu, J.; Demirov, E.; Zhang, Y.; Polomska-Harlick, A. Model simulations of mesoscale eddies and deep convection in the Labrador Sea. Adv. Atmos. Sci. 2014, 31, 743–754. [Google Scholar] [CrossRef]
- Ohashi, K.; Sheng, J.; Thompson, K.R.; Hannah, C.G.; Ritchie, H. Numerical study of three-dimensional shelf circulation on the Scotian Shelf using a shelf circulation model. Cont. Shelf Res. 2009, 29, 2138–2156. [Google Scholar] [CrossRef]
- Shan, S.; Sheng, J. Numerical Study of Topographic Effects on Wind-Driven Coastal Upwelling on the Scotian Shelf. J. Mar. Sci. Eng. 2022, 10, 497. [Google Scholar] [CrossRef]
- Wang, P.; He, Z.; Thompson, K.R.; Sheng, J. Modulation of near-inertial oscillations by low-frequency current variations on the inner Scotian shelf. J. Phys. Oceanogr. 2019, 49, 329–352. [Google Scholar] [CrossRef]
- Thompson, K.R.; Ohashi, K.; Sheng, J.; Bobanovic, J.; Ou, J. Suppressing bias and drift of coastal circulation models through the assimilation of seasonal climatologies of temperature and salinity. Cont. Shelf Res. 2007, 27, 1303–1316. [Google Scholar] [CrossRef]
- Lu, Y.; Wright, D.G.; Clarke, R.A. Modelling deep seasonal temperature changes in the Labrador Sea. Geophys. Res. Lett. 2006, 3, 1–5. [Google Scholar] [CrossRef]
- Zhu, J.; Demirov, E.; Dupont, F.; Wright, D. Eddy-permitting simulations of the sub-polar North Atlantic: Impact of the model bias on water mass properties and circulation. Ocean Dyn. 2010, 60, 1177–1192. [Google Scholar] [CrossRef]
- He, Z.; Thompson, K.R.; Ritchie, H.; Lu, Y.; Dupont, F. Reducing drift and bias of a global ocean model by frequency-dependent nudging. Atmos. Ocean 2014, 52, 242–255. [Google Scholar] [CrossRef]
- Shore, J.; Stacey, M.W.; Wright, D.G. Sources of eddy energy simulated by a model of the Northeast Pacific Ocean. J. Phys. Oceanogr. 2008, 38, 2283–2293. [Google Scholar] [CrossRef]
- Yang, S.; Xing, J.; Sheng, J.; Chen, S.; Chen, D. A process study of interactions between a warm eddy and the Kuroshio Current in Luzon Strait: The fate of eddies. J. Mar. Syst. 2019, 194, 66–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.S.; Yang, Y. The Kuroshio Intrusion into the South China Sea at Luzon Strait Can Be Remotely Influenced by the Downstream Intrusion into the East China Sea. J. Geophys. Res. Oceans 2023, 128, e2023JC019868. [Google Scholar] [CrossRef]
- Chern, C.S.; Jan, S.; Wang, J. Numerical study of mean flow patterns in the South China Sea and the Luzon Strait. Ocean Dyn. 2010, 60, 1047–1059. [Google Scholar] [CrossRef]
- Li, L.; Nowlin, W.D.; Jilan, S. Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. Part I 1998, 45, 1469–1482. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef]
- Yuan, Y.; Liao, G.; Yang, C. The Kuroshio near the Luzon Strait and Circulation in the Northern South China Sea during August and September 1994. J. Oceanogr. 2008, 64, 777–788. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Qiu, B.; Tian, J. Anticyclonic eddy sheddings from Kuroshio Loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr. 2017, 47, 1243–1259. [Google Scholar] [CrossRef]
- Zhao, W.; Hou, Y.J.; Qi, P.; Le, K.T.; Li, M.K. The Effects of Monsoons and Connectivity of South China Sea on the Seasonal Variations of Water Exchange in the Luzon Strait. J. Hydrodyn. 2009, 21, 264–270. [Google Scholar] [CrossRef]
- Farris, A.; Wimbush, M. Wind-induced Kuroshio intrusion into the South China Sea. J. Oceanogr. 1996, 52, 771–784. [Google Scholar] [CrossRef]
- Shaw, P.T. The seasonal variation of the intrusion of the Philippine Sea Water into the South China Sea. J. Geophys. Res. Oceans 1991, 96, 821–827. [Google Scholar] [CrossRef]
- Chen, G.X.; Hou, Y.J.; Chu, X.Q.; Qi, P.; Hu, P. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chin. J. Oceanol. Limn. 2009, 27, 943–954. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.J.; Chai, F.; Wang, D.X.; Yu, F.; Shi, M.C.; Guo, P.F.; Xiu, P. Weakening of the Kuroshio Intrusion into the South China Sea over the Past Two Decades. J. Clim. 2013, 26, 8097–8110. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Chern, C.S.; Zheng, Z.W. Numerical study on the interactions between the Kuroshio current in the Luzon Strait and a mesoscale eddy. Ocean Dyn. 2017, 67, 369–381. [Google Scholar] [CrossRef]
- Sun, Z.B.; Zhang, Z.W.; Qiu, B.; Zhang, X.C.; Zhou, C.; Huang, X.D.; Zhao, W.; Tian, J.W. Three-dimensional structure and interannual variability of the Kuroshio loop current in the northeastern south china sea. J. Phys. Oceanogr. 2020, 50, 2437–2455. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; Lin, P.; Li, Y. Kuroshio intrusion in the Luzon Strait in an eddy-resolving ocean model and air-sea coupled model. Acta Oceanol. Sin. 2020, 39, 52–68. [Google Scholar] [CrossRef]
- He, Z.; Fu, X.; Zhao, Y.; Jiang, X. Multiscale Energy Transfers and Conversions of Kuroshio in Luzon Strait and Its Adjacent Regions. J. Mar. Sci. Eng. 2022, 10, 975. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Liang, X.S.; Zhang, Y. Different mechanisms for the seasonal variations of the mesoscale eddy energy in the South China Sea. Deep-Sea Res. Part I 2022, 179, 103677. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Mao, L.; Zhang, Y. On the Genesis of the South China Sea Mesoscale Eddies. J. Mar. Sci. Eng. 2022, 10, 188. [Google Scholar] [CrossRef]
- Chern, C.S.; Wang, J. A numerical study of the summertime flow around the Luzon Strait. J. Oceanogr. 1998, 54, 53–64. [Google Scholar] [CrossRef]
- Hong, B.; Wang, D. Sensitivity study of the seasonal mean circulation in the northern South China Sea. Adv. Atmos. Sci. 2008, 25, 824–840. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Res. Part I 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Xue, H.; Chai, F.; Pettigrew, N.; Xu, D.; Shi, M.; Xu, J. Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. Oceans 2004, 109, 1–14. [Google Scholar] [CrossRef]
- Hsin, Y.C.; Wu, C.R.; Chao, S.Y. An updated examination of the Luzon Strait transport. J. Geophys. Res. Oceans 2012, 117, 1–18. [Google Scholar] [CrossRef]
- Liang, W.D.; Yang, Y.J.; Tang, T.Y.; Chuang, W.S. Kuroshio in the Luzon Strait. J. Geophys. Res. Oceans 2008, 113, 1–19. [Google Scholar] [CrossRef]
- Wu, R.; Jia, L.; Li, C.; Liu, Y.; Han, B.; Chen, D. Impact of Horizontal Resolution (Submesoscale Permitting vs. Mesoscale Resolving) on Ocean Dynamic Features in the South China Sea. Earth Space Sci. 2022, 9, e2022EA002448. [Google Scholar] [CrossRef]
- Ezer, T.; Mellor, G.L. A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Model. 2004, 6, 379–403. [Google Scholar] [CrossRef]
- Product User Manual for Global Ocean Reanalysis Products GLOBAL-REANALYSIS-PHY-001-031. Available online: https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-031.pdf (accessed on 20 April 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorl. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wu, C.R.; Shaw, P.T.; Chao, S.Y. Assimilating altimetric data into a South China Sea model. J. Geophys. Res. Oceans 1999, 104, 29987–30005. [Google Scholar] [CrossRef]
- Peng, S.; Zeng, X.; Li, Z. A three-dimensional variational data assimilation system for the South China Sea: Preliminary results from observing system simulation experiments. Ocean Dyn. 2016, 66, 737–750. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, L.; Shu, Y.; Liu, Q.; Zu, T.; Li, J.; Chen, J. Interannual variability of South China Sea winter circulation: Response to Luzon Strait transport and El Niño wind. Clim. Dyn. 2019, 54, 1145–1159. [Google Scholar] [CrossRef]
- Feng, B.X.; Liu, H.L.; Lin, P.F. Effects of Kuroshio intrusion optimization on the simulation of mesoscale eddies in the northern South China Sea. Acta Oceanol. Sin. 2020, 39, 12–24. [Google Scholar] [CrossRef]
- Hsin, Y.C.; Qu, T.; Wu, C.R. Intra-seasonal variation of the Kuroshio southeast of Taiwan and its possible forcing mechanism. Ocean Dyn. 2010, 60, 1293–1306. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.; Qiu, B.; Zhou, C.; Zhao, W.; Tian, J. Subsurface Mesoscale Eddies Observed in the Northeastern South China Sea: Dynamic Features and Water Mass Transport. J. Phys. Oceanogr. 2022, 52, 841–855. [Google Scholar] [CrossRef]
- Katavouta, A.; Thompson, K.R. Downscaling ocean conditions: Experiments with a quasi-geostrophic model. Ocean Model. 2013, 72, 231–241. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Chai, F.; Shi, L.; Shi, M.; Guo, P. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn. 2011, 61, 1291–1304. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, H.; Hu, J.; Lin, P. A double-index method to classify Kuroshio intrusion paths in the Luzon Strait. Adv. Atmos. Sci. 2016, 33, 715–729. [Google Scholar] [CrossRef]
- Trott, C.B.; Metzger, E.J.; Yu, Z. Investigating mesoscale eddy characteristics in the Luzon Strait region using altimetry. Ocean Dyn. 2021, 71, 679–698. [Google Scholar] [CrossRef]
- Liang, X.S.; Robinson, A.R. Localized multiscale energy and vorticity analysis. I: Fundamentals. Dyn. Atmos. Oceans 2005, 38, 195–230. [Google Scholar] [CrossRef]
- Liang, X.S.; Robinson, A.R. Localized multi-scale energy and vorticity analysis. II: Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans 2007, 44, 51–76. [Google Scholar] [CrossRef]
- Liang, X.S.; Anderson, D.G.M. Multiscale window transform. Multiscale Model. Simul. 2007, 6, 437–467. [Google Scholar] [CrossRef]
- Liang, X.S. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci. 2016, 73, 4439–4468. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 2009, 36, L07608. [Google Scholar] [CrossRef]
Error | RMSE | |||||||
---|---|---|---|---|---|---|---|---|
Depth (m) | GLO | CTR | SPN1 | SPN2 | GLO | CTR | SPN1 | SPN2 |
20 | −0.0556 | −0.5599 | −0.1268 | −0.0722 | 1.1735 | 1.5667 | 1.3884 | 1.3457 |
50 | 0.0188 | −1.3048 | −0.1884 | −0.1195 | 1.3555 | 2.4529 | 1.6341 | 1.6382 |
100 | 0.1237 | −1.3044 | 0.0191 | 0.0350 | 1.3494 | 2.5859 | 1.7990 | 1.7428 |
200 | −0.1473 | −0.5586 | −0.1368 | −0.0532 | 1.0451 | 1.3836 | 1.2354 | 1.1405 |
300 | −0.1135 | −0.1143 | −0.0247 | −0.0219 | 0.8583 | 1.0909 | 0.9893 | 0.9109 |
400 | −0.3672 | 0.1973 | 0.1627 | 0.0019 | 0.8477 | 1.0101 | 1.0176 | 0.8948 |
500 | −0.2354 | 0.5834 | 0.1181 | 0.0139 | 0.7015 | 1.0293 | 0.9083 | 0.7952 |
Error | RMSE | |||||||
---|---|---|---|---|---|---|---|---|
Depth (m) | GLO | CTR | SPN1 | SPN2 | GLO | CTR | SPN1 | SPN2 |
20 | −0.0443 | 0.1784 | 0.0387 | 0.0332 | 0.2407 | 0.3580 | 0.2956 | 0.2823 |
50 | 0.0132 | 0.1734 | 0.0517 | 0.0132 | 0.1847 | 0.3067 | 0.2946 | 0.2400 |
100 | 0.0203 | 0.0371 | 0.1499 | 0.0442 | 0.1331 | 0.1840 | 0.2292 | 0.1659 |
200 | 0.0021 | −0.0603 | 0.0560 | 0.0054 | 0.0771 | 0.1210 | 0.1189 | 0.0870 |
300 | −0.0087 | −0.0337 | 0.0219 | 0.0002 | 0.0709 | 0.0860 | 0.0823 | 0.0733 |
400 | −0.0160 | 0.0215 | 0.0419 | 0.0113 | 0.0694 | 0.0812 | 0.0946 | 0.0795 |
500 | −0.0037 | 0.0334 | 0.0214 | 0.0084 | 0.0556 | 0.0858 | 0.0818 | 0.0704 |
rkw | rkw | Looping (%) | Leaping (%) | Leaking (%) | |
---|---|---|---|---|---|
OBS | 1.0000 | 1.0000 | 13.2 | 13.7 | 73.1 |
CTR | 0.1128 | 0.0913 | 17.3 | 17.8 | 64.9 |
SPN1 | 0.0457 | 0.2151 | 13.8 | 13.1 | 73.1 |
SPN2 | 0.2128 | 0.3146 | 13.3 | 10.4 | 76.3 |
A0 | A1 | A2 | K0 | K1 | K2 | ||
---|---|---|---|---|---|---|---|
TW-WPO | GLO | 67.6545 | 9.4935 | 9.4059 | 16.8163 | 2.3802 | 12.3906 |
CTR | 60.2448 | 4.6805 | 3.9007 | 17.3433 | 1.9502 | 4.2440 | |
SPN1 | 58.6134 | 6.4047 | 2.5815 | 13.4960 | 0.6998 | 2.6758 | |
SPN2 | 63.6513 | 6.9630 | 5.0244 | 14.8814 | 1.2572 | 5.2186 | |
LS-SCS | GLO | 16.0355 | 9.5464 | 5.7908 | 1.2325 | 1.5966 | 6.6361 |
CTR | 14.4205 | 5.1643 | 4.7856 | 15.0402 | 2.1236 | 5.6545 | |
SPN1 | 14.0683 | 6.7944 | 3.2963 | 2.3211 | 1.0899 | 3.0826 | |
SPN2 | 15.6068 | 7.3791 | 4.8273 | 2.2272 | 1.9128 | 5.4373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; He, Z.; Zhao, Y.; Jiang, X.; Wang, M. Impact of Correction Target Selection on Long-Term Spectral Nudging in Luzon Strait and Its Adjacent Regions. J. Mar. Sci. Eng. 2023, 11, 2164. https://doi.org/10.3390/jmse11112164
Fu X, He Z, Zhao Y, Jiang X, Wang M. Impact of Correction Target Selection on Long-Term Spectral Nudging in Luzon Strait and Its Adjacent Regions. Journal of Marine Science and Engineering. 2023; 11(11):2164. https://doi.org/10.3390/jmse11112164
Chicago/Turabian StyleFu, Xiachuan, Zhongjie He, Yueqi Zhao, Xuyu Jiang, and Mengyao Wang. 2023. "Impact of Correction Target Selection on Long-Term Spectral Nudging in Luzon Strait and Its Adjacent Regions" Journal of Marine Science and Engineering 11, no. 11: 2164. https://doi.org/10.3390/jmse11112164
APA StyleFu, X., He, Z., Zhao, Y., Jiang, X., & Wang, M. (2023). Impact of Correction Target Selection on Long-Term Spectral Nudging in Luzon Strait and Its Adjacent Regions. Journal of Marine Science and Engineering, 11(11), 2164. https://doi.org/10.3390/jmse11112164