Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data
2.2. Long Short-Term Memory (LSTM)
2.3. Model Development
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuebbles, D.; Fahey, D.; Hibbard, K.; Dokken, D.; Stewart, B.; Maycock, T. Climate Science Special Report: Fourth National Climate Assessment; Technical Report; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I. [Google Scholar] [CrossRef]
- Alothman, A.; Bos, M.; Fernandes, R.; Ayhan, M. Sea level rise in the north-western part of the Arabian Gulf. J. Geodyn. 2014, 81, 105–110. [Google Scholar] [CrossRef]
- Sheppard, C.; Al-Husiani, M.; Al-Jamali, F.; Al-Yamani, F.; Baldwin, R.; Bishop, J.; Benzoni, F.; Dutrieux, E.; Dulvy, N.K.; Durvasula, S.R.V.; et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 2010, 60, 13–38. [Google Scholar] [CrossRef] [PubMed]
- Almajed, N.; Mohammadi, H.; Alghadban, A.; Alawadi, A. Regional Report of the State of the Marine Environment, 1st ed.; Regional Organization for the Protection of the Marine Environment (ROPME): Kuwait City, Kuwait, 2000; Volume 10, Available online: https://ropme.org/?page_id=2573 (accessed on 14 April 2023).
- Hsieh, C.M.; Chou, D.; Hsu, T.W. Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability 2022, 14, 7291. [Google Scholar] [CrossRef]
- Tur, R.; Tas, E.; Haghighi, A.T.; Mehr, A.D. Sea Level Prediction Using Machine Learning. Water 2021, 13, 3566. [Google Scholar] [CrossRef]
- Srinivas, K.; Das, V.K.; Dinesh Kumar, P.K. Statistical modelling of monthly mean sea level at coastal tide gauge stations along the Indian subcontinent. Indian J. Mar. Sci. 2005, 34, 212–224. [Google Scholar]
- Balogun, A.L.; Adebisi, N. Sea level prediction using ARIMA, SVR and LSTM neural network: Assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy. Geomat. Nat. Hazards Risk 2021, 12, 653–674. [Google Scholar] [CrossRef]
- Zupan, J. Introduction to Artificial Neural Network (ANN) Methods: What They Are and How to Use Them. Acta Chim. Slov. 1994, 41, 327–352. [Google Scholar]
- Makarynskyy, O.; Makarynska, D.; Kuhn, M.; Featherstone, W. Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia. Estuar. Coast. Shelf Sci. 2004, 61, 351–360. [Google Scholar] [CrossRef]
- Grossi, E.; Buscema, M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol. 2008, 19, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fan, Y.; Mu, Y. Sea Level Prediction in the Yellow Sea From Satellite Altimetry With a Combined Least Squares-Neural Network Approach. Mar. Geod. 2019, 42, 344–366. [Google Scholar] [CrossRef]
- Nourani, V.; Behfar, N. Multi-station runoff-sediment modeling using seasonal LSTM models. J. Hydrol. 2021, 601, 126672. [Google Scholar] [CrossRef]
- Vaughan, G.O.; Al-Mansoori, N.; Burt, J.A. The Arabian Gulf. In World Seas: An Environmental Evaluation; Elsevier: Hoboken, NJ, USA, 2019; pp. 1–23. [Google Scholar] [CrossRef]
- Sultan, S.; Ahmad, F.; Elghribi, N.; Al-Subhi, A. An analysis of Arabian Gulf monthly mean sea level. Cont. Shelf Res. 1995, 15, 1471–1482. [Google Scholar] [CrossRef]
- El-Gindy, A.; Eid, F. The seasonal variations of sea level due to density variations in the Arabian Gulf and Gulf of Oman. Pak. J. Mar. Sci. 1997, 6, 1–12. [Google Scholar]
- Al-Subhi, A. Tide and Sea Level Characteristics at Juaymah, West Coast of the Arabian Gulf. J. King Abdulaziz Univ. Mar. Sci. 2010, 21, 133–149. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solit. Fractals 2020, 135, 109864. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Generating Sequences With Recurrent Neural Networks. 2014. Available online: https://arxiv.org/pdf/1308.0850.pdf (accessed on 19 April 2023).
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, Z.; Xu, Y.; Ke, D.; Su, K. Long Short-Term Memory Projection Recurrent Neural Network Architectures for Piano’s Continuous Note Recognition. J. Robot. 2017, 2017, 2061827. [Google Scholar] [CrossRef]
- Fu, L.L.; Christensen, E.J.; Yamarone, C.A.; Lefebvre, M.; Ménard, Y.; Dorrer, M.; Escudier, P. TOPEX/POSEIDON mission overview. J. Geophys. Res. Oceans 1994, 99, 24369. [Google Scholar] [CrossRef]
- Cheng, S.; Hu, H.; Zhang, X.; Guo, Z. DeepRS: Deep-Learning Based Network-Adaptive FEC for Real-Time Video Communications. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 10–21 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Al-Subhi, A.M.; Abdulla, C.P. Sea-Level Variability in the Arabian Gulf in Comparison with Global Oceans. Remote Sens. 2021, 13, 4524. [Google Scholar] [CrossRef]
- Karimi Dastgerdi, A.; Mercorelli, P. Investigating the Effect of Noise Elimination on LSTM Models for Financial Markets Prediction Using Kalman Filter and Wavelet Transform. WSEAS Trans. Bus. Econ. 2022, 19, 432–441. [Google Scholar] [CrossRef]
Phase # | Gap Size | Model’s Trend | Trend from Alternative Sources | RMSE | MAPE |
---|---|---|---|---|---|
1 | 6 Years | 2.71 ± 1.11 mm/yr | 2.79 ± 2.78 mm/yr (NOAA) | 63.4 mm | 3.14% |
2 | 13 Years | 2.82 ± 0.47 mm/yr | 4.59 ± 0.4 mm/yr (NOAA) 2.92 mm/yr [24] | 66.5 mm | 3.07% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenezi, N.; Alsulaili, A.; Alkhalidi, M. Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks. J. Mar. Sci. Eng. 2023, 11, 2052. https://doi.org/10.3390/jmse11112052
Alenezi N, Alsulaili A, Alkhalidi M. Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks. Journal of Marine Science and Engineering. 2023; 11(11):2052. https://doi.org/10.3390/jmse11112052
Chicago/Turabian StyleAlenezi, Nasser, Abdalrahman Alsulaili, and Mohamad Alkhalidi. 2023. "Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks" Journal of Marine Science and Engineering 11, no. 11: 2052. https://doi.org/10.3390/jmse11112052
APA StyleAlenezi, N., Alsulaili, A., & Alkhalidi, M. (2023). Prediction of Sea Level in the Arabian Gulf Using Artificial Neural Networks. Journal of Marine Science and Engineering, 11(11), 2052. https://doi.org/10.3390/jmse11112052