Vortex-Induced Vibration and Fatigue Damage Assessment for a Submarine Pipeline on a Sand Wave Seabed
Abstract
:1. Introduction
2. Methodology
2.1. VIV and Fatigue Assessment
2.2. Model Description
2.3. Input Parameters
3. VIV Onset Span Screening
3.1. On Non-Trench Seabed
3.2. On 1 m Trench Seabed
4. VIV Fatigue Analysis
4.1. On Non-Trench Seabed
4.2. On 1 m Trench Seabed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmer, A.C.; King, R.A. Subsea Pipeline Engineering; PennWell Corporation: Tulsa, OK, USA, 2008. [Google Scholar]
- DNVGL-RP- F105; Free Spanning Pipelines. Det Norske Veritas: Bærum, Norway, 2017.
- Brunone, B. A transient test-based technique for leak detection in outfall pipes. J. Water Res. Plan. Man. ASCE 1999, 125, 302–306. [Google Scholar] [CrossRef]
- Meniconi, S.; Rubin, A.; Tirello, L.; Capponi, C.; Cifrodelli, M.; Lucato, P.; Brunone, B. Checking procedure of the Trieste (Italy) subsea pipeline by transient tests. Preliminary results. Proceedings 2019, 48, 2. [Google Scholar]
- Zang, Z.; Cheng, L.; Zhao, M.; Liang, D.; Teng, B. A numerical model for onset of scour below offshore pipelines. Coast. Eng. 2009, 56, 458–466. [Google Scholar] [CrossRef]
- Sumer, B.M.; Truelsen, C.; Sichmann, T.; Fredsøe, J. Onset of scour below pipelines and self-burial. Coast. Eng. 2001, 42, 313–335. [Google Scholar] [CrossRef]
- Cheng, L.; Yeow, K.; Zang, Z.; Li, F. 3D scour below pipelines under waves and combined waves and currents. Coast. Eng. 2014, 83, 137–149. [Google Scholar] [CrossRef]
- Wu, Y.S.; Chiew, Y.M. Mechanics of pipeline scour propagation in the spanwise direction. J. Waterw. Port Coast. 2015, 141, 04014045. [Google Scholar] [CrossRef]
- Sui, T.; Staunstrup, L.H.; Carstensen, S.; Fuhrman, D.R. Span shoulder migration in three-dimensional current-induced scour beneath submerged pipelines. Coast. Eng. 2021, 164, 103776. [Google Scholar] [CrossRef]
- Morelissen, R.; Hulscher, S.J.M.H.; Knaapen, M.A.F.; Németh, A.A.; Bijker, R. Mathematical modelling of sand wave migration and the interaction with pipelines. Coast. Eng. 2003, 48, 197–209. [Google Scholar] [CrossRef]
- Németh, A.A.; Hulscher, S.J.M.H.; Van Damme, R.M.J. Simulating offshore sand waves. Coast. Eng. 2006, 53, 265–275. [Google Scholar] [CrossRef]
- Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves. J. Geophy. Res. 2009, 114, F02007. [Google Scholar] [CrossRef]
- Zang, Z.; Xie, B.; Cheng, L.; He, F.; Zou, X. Numerical investigations on the transient behavior of sand waves in Beibu Gulf under normal and extreme sea conditions. China Ocean Eng. 2023, 37, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Zhuang, L.; Yan, J. Sand waves near the shelf break of the northern South China Sea: Morphology and recent mobility. Geo-Mar. Lett. 2019, 39, 19–36. [Google Scholar] [CrossRef]
- Zang, Z.; Zhang, Y.; Chen, T.; Xie, B.; Zou, X.; Li, Z. A numerical simulation of internal wave propagation on a continental slope and its influence on sediment transport. J. Mar. Sci. Eng. 2023, 11, 517. [Google Scholar] [CrossRef]
- Free Span Analysis of the Pipeline in Lufeng Oilfield; CNOOC Research Institute Co., Ltd.: Beijing, China, 2020.
- DNV-OS-F101; Submarine Pipeline Systems. Det Norske Veritas: Bærum, Norway, 2013.
- Choi, H.S. Free spanning analysis of offshore pipelines. Ocean Eng. 2001, 28, 1325–1338. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Duan, G.; Jukes, P. VIV analysis of pipelines under complex span conditions. J. Marine. Sci. Appl. 2009, 8, 105–109. [Google Scholar] [CrossRef]
- Sollund, H.A.; Vedeld, K.; Fyrileiv, O.; Hellesland, J. Improved assessments of wave-induced fatigue for free spanning pipelines. Appl. Ocean Res. 2016, 61, 130–147. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, H.; Srinil, N. Experimental investigation on vortex-induced vibration and solid-structure impact of a near-bottom horizontal flexible pipeline in oblique shear flow. J. Fluids Struct. 2021, 106, 103356. [Google Scholar] [CrossRef]
- Xu, W.; Jia, K.; Ma, Y.; Song, Z. Vortex-induced vibration response features of a submarine multi-Span pipeline via towing tank experimental tests. China Ocean Eng. 2023, 37, 175–189. [Google Scholar] [CrossRef]
- Pu, J.; Xu, J.; Li, G. Self-burial and potential hazards of a submarine pipeline in the sand wave area in the South China Sea. J. Pipeline Syst Eng. 2013, 4, 124–130. [Google Scholar] [CrossRef]
- Wang, L.; Gong, H.; Xing, X.; Yuan, J. Rigid dynamic performance simulation of an offshore pipeline plough. Ocean Eng. 2015, 94, 51–66. [Google Scholar] [CrossRef]
- DNVGL-RP-C203; Fatigue Design of Offshore Steel Structures. Det Norske Veritas: Bærum, Norway, 2019.
Parameter | Units | Carrier Pipe | Casing Pipe |
---|---|---|---|
Design Life | Years | 25 | 25 |
Pipe Grade | - | API 5L PSL2 X65 | API 5L PSL2 X65 |
SMYS | MPa | 450 | 450 |
Outside Diameter | mm | 323.9 | 457.0 |
Wall Thickness | mm | 14.3 | 14.3 |
Corrosion Allowance | mm | 3.0 | - |
Insulation Coating | mm(kg/m3) | 45.0(50) | - |
Anti-Corro. Coating | mm(kg/m3) | - | 3.5(920) |
Content Density | kg/m3 | 821–953 | - |
Operating Pressure | Mpa | 4.401 | - |
Hydrotest Pressure | Mpa | 7.161 | - |
N | NE | E | SE | S | SW | W | NW | Total (%) |
---|---|---|---|---|---|---|---|---|
0.49 | 40.64 | 27.76 | 5.83 | 10.48 | 13.92 | 0.66 | 0.23 | 100 |
Direction | N | NE | E | SE | S | SW | W | NW |
---|---|---|---|---|---|---|---|---|
Pmax (%) | 10.63 | 14.97 | 8.74 | 16.76 | 15.82 | 20.88 | 21.13 | 11.89 |
Hs (m) | 1.0–1.5 | 3.0–3.5 | 0.5–1.0 | 0.5–1.0 | 0.5–1.0 | 0.5–1.0 | 0.5–1.0 | 0.5–1.0 |
Tp (s) | 5.0–6.0 | 8.0–9.0 | 6.0–7.0 | 6.0–7.0 | 6.0–7.0 | 6.0–7.0 | 4.0–5.0 | 5.0–6.0 |
Parameter | Symbol | Value |
---|---|---|
Safety Factor for Fatigue | η | 0.5/0.25 |
For Natural Frequencies | γf | 1.00 |
For Onset of VIV (IL) | γon,IL | 1.10 |
For Onset of VIV (CF) | γon,CF | 1.20 |
On Stability Parameter | γk | 1.15 |
On Stress Amplitude | γs | 1.30 |
Condition | Unit | VIV Onset Span | |
---|---|---|---|
Max. Tension | Min. Tension | ||
Empty | m | 30.8 | 29.9 |
Flooded | m | 30.8 | 29.9 |
Operation | m | 18.1 | 17.7 |
Cases | Annual Damage | Life (yr) | Total Damage | |||
---|---|---|---|---|---|---|
Cap | Root | Cap | Root | Allow | ||
Empty | 0.011 | 0.014 | 0.6 | 0.003 | 0.003 | 0.017 |
Flooded | 0.000 | 0.000 | N/A | 0.003 | 0.003 | 0.017 |
Operation | 0.078 | 0.082 | 1.6 | 1.946 | 2.039 | 0.133 |
Cases | Annual Damage | Life (yr) | Total Damage | |||
---|---|---|---|---|---|---|
Cap | Root | Cap | Root | Allow | ||
Empty | 0.015 | 0.030 | 0.3 | 0.006 | 0.012 | 0.017 |
Flooded | 0.010 | 0.019 | 0.4 | 0.006 | 0.012 | 0.017 |
Operation | 0.020 | 0.020 | 6.6 | 0.496 | 0.501 | 0.133 |
Cases | Annual Damage | Life (yr) | Total Damage | |||
---|---|---|---|---|---|---|
Cap | Root | Cap | Root | Allow | ||
Empty | 0.007 | 0.009 | 0.6 | 0.002 | 0.002 | 0.017 |
Flooded | 0.000 | 0.000 | N/A | 0.003 | 0.003 | 0.017 |
Operation | 0.000 | 0.000 | 1.6 | 0.000 | 0.000 | 0.133 |
Cases | Annual Damage | Life (yr) | Total Damage | |||
---|---|---|---|---|---|---|
Cap | Root | Cap | Root | Allow | ||
Empty | 0.009 | 0.017 | 0.3 | 0.002 | 0.004 | 0.017 |
Flooded | 0.002 | 0.003 | 0.4 | 0.006 | 0.012 | 0.017 |
Operation | 0.000 | 0.000 | 6.6 | 0.000 | 0.000 | 0.133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Xie, B.; Zang, Z.; Chen, E.; Hou, J. Vortex-Induced Vibration and Fatigue Damage Assessment for a Submarine Pipeline on a Sand Wave Seabed. J. Mar. Sci. Eng. 2023, 11, 2031. https://doi.org/10.3390/jmse11102031
Zou X, Xie B, Zang Z, Chen E, Hou J. Vortex-Induced Vibration and Fatigue Damage Assessment for a Submarine Pipeline on a Sand Wave Seabed. Journal of Marine Science and Engineering. 2023; 11(10):2031. https://doi.org/10.3390/jmse11102031
Chicago/Turabian StyleZou, Xing, Botao Xie, Zhipeng Zang, Enbang Chen, and Jing Hou. 2023. "Vortex-Induced Vibration and Fatigue Damage Assessment for a Submarine Pipeline on a Sand Wave Seabed" Journal of Marine Science and Engineering 11, no. 10: 2031. https://doi.org/10.3390/jmse11102031
APA StyleZou, X., Xie, B., Zang, Z., Chen, E., & Hou, J. (2023). Vortex-Induced Vibration and Fatigue Damage Assessment for a Submarine Pipeline on a Sand Wave Seabed. Journal of Marine Science and Engineering, 11(10), 2031. https://doi.org/10.3390/jmse11102031