Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean?
Abstract
1. Introduction
2. Zooplankton Research near Hydrothermal Vents
3. Variable Hydrographic Effects of HV Effluent Temperature, pH and Chemistry Affecting Zooplankton
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic. 2021, 129, 107867. [Google Scholar] [CrossRef]
- Lough, A.J.M.; Tagliabue, A.; Demasy, C.; Resing, J.A.; Mellett, T.; Wyatt, N.J.; Lohan, M.C. The Impact of Hydrothermal Vent Geochemistry on the Addition of Iron to the Deep Ocean. Biogeosciences Discuss. 2022, 1–23. [Google Scholar] [CrossRef]
- Chang, N.-N.; Lin, L.-H.; Tu, T.-H.; Jeng, M.-S.; Chikaraishi, Y.; Wang, P.-L. Trophic Structure and Energy Flow in a Shallow-Water Hydrothermal Vent: Insights from a Stable Isotope Approach. PLoS ONE 2018, 13, e0204753. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Wu, Q.; Liu, S.; Song, C.; Xiao, J.; Band, L.E.; Vose, J.M. Vegetation Structural Change and CO2 Fertilization More than Offset Gross Primary Production Decline Caused by Reduced Solar Radiation in China. Agric. For. Meteorol. 2021, 296, 108207. [Google Scholar] [CrossRef]
- Rampino, M.R.; Caldeira, K.; Zhu, Y. A Pulse of the Earth: A 27.5-Myr Underlying Cycle in Coordinated Geological Events over the Last 260 Myr. Geosci. Front. 2021, 12, 101245. [Google Scholar] [CrossRef]
- Shi, G.; Yan, H.; Zhang, W.; Dodson, J.; Heijnis, H. The Impacts of Volcanic Eruptions and Climate Changes on the Development of Hani Peatland in Northeastern China during the Holocene. J. Asian Earth Sci. 2021, 210, 104691. [Google Scholar] [CrossRef]
- Alhamid, A.K.; Akiyama, M.; Ishibashi, H.; Aoki, K.; Koshimura, S.; Frangopol, D.M. Framework for Probabilistic Tsunami Hazard Assessment Considering the Effects of Sea-Level Rise Due to Climate Change. Struct. Saf. 2022, 94, 102152. [Google Scholar] [CrossRef]
- Bakirci, K.; Kirtiloglu, Y. Effect of Climate Change to Solar Energy Potential: A Case Study in the Eastern Anatolia Region of Turkey. Environ. Sci. Pollut. Res. 2022, 29, 2839–2852. [Google Scholar] [CrossRef]
- Van Dover, C.L. Impacts of Anthropogenic Disturbances at Deep-Sea Hydrothermal Vent Ecosystems: A Review. Mar. Environ. Res. 2014, 102, 59–72. [Google Scholar] [CrossRef]
- Chan, I.; Tseng, L.-C.; Kâ, S.; Chang, C.-F.; Hwang, J.-S. An Experimental Study of the Response of the Gorgonian Coral Subergorgia Suberosa to Polluted Seawater from a Former Coastal Mining Site in Taiwan. Zool. Stud. 2012, 11, 27–37. [Google Scholar]
- Dahms, H.-U.; Schizas, N.V.; James, R.A.; Wang, L.; Hwang, J.-S. Marine Hydrothermal Vents as Templates for Global Change Scenarios. Hydrobiologia 2018, 818, 1–10. [Google Scholar] [CrossRef]
- Skebo, K.; Tunnicliffe, V.; Garcia Berdeal, I.; Johnson, H.P. Spatial Patterns of Zooplankton and Nekton in a Hydrothermally Active Axial Valley on Juan de Fuca Ridge. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 1044–1060. [Google Scholar] [CrossRef]
- Kâ, S.; Hwang, J.-S. Mesozooplankton Distribution and Composition on the Northeastern Coast of Taiwan during Autumn: Effects of the Kuroshio Current and Hydrothermal Vents. Zool. Stud. 2011, 9, 155–163. [Google Scholar]
- Tarasov, V.G.; Gebruk, A.V.; Shulkin, V.M.; Kamenev, G.M.; Fadeev, V.I.; Kosmynin, V.N.; Malakhov, V.V.; Starynin, D.A.; Obzhirov, A.I. Effect of Shallow-Water Hydrothermal Venting on the Biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Cont. Shelf Res. 1999, 19, 79–116. [Google Scholar] [CrossRef]
- Tarasov, V.G.; Gebruk, A.V.; Mironov, A.N.; Moskalev, L.I. Deep-Sea and Shallow-Water Hydrothermal Vent Communities: Two Different Phenomena? Chem. Geol. 2005, 224, 5–39. [Google Scholar] [CrossRef]
- Dahms, H.-U.; Hwang, J.-S. Mortality in the ocean—With lessons from hydrothermal vents off Kueishan Tao, Ne-Taiwan. J. Mar. Sci. Technol. 2013, 21, 12. [Google Scholar] [CrossRef]
- Hung, J.-J.; Peng, S.-H.; Chen, C.-T.; Wei, T.-P.A.; Hwang, J.-S. Reproductive adaptations of the hydrothermal vent crab Xenograpus testudinatus: An isotopic approach. PLoS ONE 2019, 14, e0211516. [Google Scholar] [CrossRef]
- Wu, Y. Occurrence of Ammonium in the Acidic-Circumneutral Coastal Groundwater of Beihai, Southern China: Δ15N, Δ13C, and Hydrochemical Constraints. J. Hydrol. 2022, 615, 128712. [Google Scholar] [CrossRef]
- Wang, T.-W.; Lau, D.C.P.; Chan, T.-Y.; Chan, B.K.K. Autochthony and Isotopic Niches of Benthic Fauna at Shallow-Water Hydrothermal Vents. Sci. Rep. 2022, 12, 6248. [Google Scholar] [CrossRef]
- Kuo, F.-W. Preliminary Investigation of the Hydrothermal Activities Off Kueishantao Island; NSYSU: Kaohsiung, Taiwan, 2001. [Google Scholar]
- Jeng, M.-S.; Ng, N.K.; Ng, P.K.L. Hydrothermal Vent Crabs Feast on Sea ‘Snow’. Nature 2004, 432, 969. [Google Scholar] [CrossRef]
- Hwang, J.S.; Lee, C.S. The mystery of underwater world for tourism of Turtle Island, Taiwan. Northeast Coast Natl. Scen. Area Adm. Tour Bur. Minist. Transp. Commun. Taiwan 2003, 1–103. [Google Scholar]
- McDermott, J.M.; Parnell-Turner, R.; Barreyre, T.; Herrera, S.; Downing, C.C.; Pittoors, N.C.; Pehr, K.; Vohsen, S.A.; Dowd, W.S.; Wu, J.-N.; et al. Discovery of Active Off-Axis Hydrothermal Vents at 9° 54′N East Pacific Rise. Proc. Natl. Acad. Sci. USA 2022, 119, e2205602119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahms, H.-U.; Thirunavukkarasu, S.; Hwang, J.-S. Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean? J. Mar. Sci. Eng. 2023, 11, 163. https://doi.org/10.3390/jmse11010163
Dahms H-U, Thirunavukkarasu S, Hwang J-S. Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean? Journal of Marine Science and Engineering. 2023; 11(1):163. https://doi.org/10.3390/jmse11010163
Chicago/Turabian StyleDahms, Hans-Uwe, Subramani Thirunavukkarasu, and Jiang-Shiou Hwang. 2023. "Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean?" Journal of Marine Science and Engineering 11, no. 1: 163. https://doi.org/10.3390/jmse11010163
APA StyleDahms, H.-U., Thirunavukkarasu, S., & Hwang, J.-S. (2023). Can Marine Hydrothermal Vents Be Used as Natural Laboratories to Study Global Change Effects on Zooplankton in a Future Ocean? Journal of Marine Science and Engineering, 11(1), 163. https://doi.org/10.3390/jmse11010163

