Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheritage and Geotourism
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Gosh
4.1.1. Description
4.1.2. Geoheritage
4.2. Lipovy
4.2.1. Description
4.2.2. Geoheritage
4.3. Shakhan
4.3.1. Description
4.3.2. Geoheritage
5. Discussion
5.1. Geoheritage Management Implications
5.2. Geotourism Implications
- (1)
- the very idea of islands in ancient tropical seas in what is now the mountainous domain sounds intriguing;
- (2)
- the thematic geoheritage makes geotourism intentions less vague and dispersed and allows for attention to be paid to a particular tourism project as a real opportunity;
- (3)
- the considered localities are linked to larger geosites (Figure 1a), accessible, and located in natural domains with significant aesthetic properties.
6. Conclusions
- (1)
- evidence of the Induan (Early Triassic), Toarcian (Early Jurassic), and Hauterivian (Early Cretaceous) islands in the Mesozoic Caucasian Sea is gathered;
- (2)
- the related localities are valuable geoheritage points which open novel thematic perspectives for the geoheritage of Mountainous Adydeya;
- (3)
- these geoheritage points can be employed for the purposes of new geoexcursion route development, which seems to be important for facilitating the growth of geotourism in the study area.
- (1)
- Do these three geoheritage points represent the same or different palaeoislands?
- (2)
- How many palaeoislands were there in the Caucasian Sea and how did they change?
- (3)
- What was the exact tectonic setting of these palaeoislands?
- (4)
- Which practical (local infrastructural) solutions are required to exploit these geoheritage points effectively (also in regard to serious interpretation needs)?
- (5)
- Is it possible to use these localities for geotourists with functional diversity (and if yes, how)?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poiraud, A.; Chevalier, M.; Claeyssen, B.; Biron, P.-E.; Joly, B. From geoheritage inventory to territorial planning tool in the Vercors massif (French Alps): Contribution of statistical and expert cross approaches. Appl. Geogr. 2016, 71, 69–82. [Google Scholar] [CrossRef]
- Migoń, P.; Różycka, M.; Michniewicz, A. Conservation and Geotourism Perspectives at Granite Geoheritage Sites of Waldviertel, Austria. Geoheritage 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mora-Frank, C.; Kovács, T.; Berrezueta, E. Georoutes as a Basis for Territorial Development of the Pacific Coast of South America: A Case Study. Geoheritage 2022, 14, 78. [Google Scholar] [CrossRef]
- Plyusnina, E.E.; Ruban, D.A.; Zayats, P.P. Thematic dimension of geological heritage: An evidence from the Western Caucasus. J. Geogr. Inst. Jovan Cvijic SASA 2015, 65, 59–76. [Google Scholar] [CrossRef]
- Gnezdilova, V.V.; Ruban, D.A.; Bruno, D.E.; Perrotta, P.; Crowley, B.E.; Oheim, K.B.; Zayats, P.P. Geoheritage sites with palaeogeographical value: Some geotourism perspectives with examples from Mountainous Adygeja (Russia). Geološki Anal. Balk. Poluostrva 2015, 76, 93–104. [Google Scholar] [CrossRef]
- Bruno, D.E.; Crowley, B.E.; Gutak, J.M.; Moroni, A.; Nazarenko, O.V.; Oheim, K.B.; Ruban, D.A.; Tiess, G.; Zorina, S.O. Paleogeography as geological heritage: Developing geosite classification. Earth Sci. Rev. 2014, 138, 300–312. [Google Scholar] [CrossRef]
- Henriques, M.H.; Pena dos Reis, R.; Garcia, G.G.; João, P.; Marques, R.M.; Custódio, S. Developing paleogeographical heritage concepts and ideas through the Upper Jurassic record of the Salgado and Consolação geosites (Lusitanian Basin, Portugal). Resour. Policy 2022, 76, 102594. [Google Scholar] [CrossRef]
- Baarli, B.G.; Webb, G.E.; Johnson, M.E.; Cook, A.G.; Walsh, D.R. Shoal-water dynamics and coastal biozones in a sheltered-island setting: Upper Devonian Pillara Limestone (Western Australia). Lethaia 2016, 49, 507–523. [Google Scholar] [CrossRef]
- Johnson, M.E. Paleoislands in the stream: Paleogeography and expected circulation patterns. Geobios 2002, 35, 96–106. [Google Scholar] [CrossRef]
- Ollive, V.; Petit, C.; Garcia, J.-P.; Reddé, M. Rhine flood deposits recorded in the Gallo-Roman site of Oedenburg (Haut-Rhin, France). Quat. Int. 2006, 150, 28–40. [Google Scholar] [CrossRef]
- Schuster, M.; Duringer, P.; Ghienne, J.-F.; Vignaud, P.; Beauvilain, A.; MacKaye, H.T.; Brunet, M. Coastal conglomerates around the Hadjer El Khamis inselbergs (Western Chad, Central Africa): New evidence for Lake Mega-Chad episodes. Earth Surf. Processes Landf. 2003, 28, 1059–1069. [Google Scholar] [CrossRef]
- Adamia, S.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Caucasus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. [Google Scholar] [CrossRef]
- Khain, V.E. Mesozoic-Cenozoic accretionary complexes of the Greater Caucasus. Dokl. Earth Sci. 2007, 413, 376–379. [Google Scholar] [CrossRef]
- Koronovskiy, N.V. he Caucasus: Unsolved problems of geology. Vestn. Mosk. Univ. Seriya Geol. 1990, 4, 3–11. [Google Scholar]
- Mosar, J.; Mauvilly, J.; Koiava, K.; Gamkrelidae, I.; Enna, N.; Lavrishev, V.; Kalberguenova, V. Tectonics in the Greater Caucasus (Georgia—Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Mar. Pet. Geol. 2022, 140, 105630. [Google Scholar] [CrossRef]
- Rolland, Y. Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Res. 2017, 49, 130–146. [Google Scholar] [CrossRef]
- Sharkov, E.; Lebedev, V.; Chugaev, A.; Zabarinskaya, L.; Rodnikov, A.; Sergeeva, N.; Safonova, I. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics. Geosci. Front. 2015, 6, 513–522. [Google Scholar] [CrossRef]
- Sosson, M.; Stephenson, R.; Adamia, S. Tectonic Evolution of the Eastern Black Sea and Caucasus: An introduction. Geol. Soc. Spec. Publ. 2017, 428, 1–9. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Cretaceous and the Paleogene of the South of the USSR; Nedra: Moskva, Soviet Union, 1978. (In Russian) [Google Scholar]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A long-lived north-tethyan back-arc basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar] [CrossRef]
- Kazmin, V.G.; Tikhonova, N.F. Evolution of Early Mesozoic back-arc basins in the Black Sea—Caucasus segment of a Tethyan active margin. Geol. Soc. Spec. Publ. 2006, 260, 179–200. [Google Scholar] [CrossRef]
- Lordkipanidze, M.B.; Adamia, S.A.; Asanidze, B.Z. Evolution of the active margins of the ocean Tethys (by example of the Caucasus). In Oceanology: Reports. 27 International Geological Congress, 3; Lisitsin, A.P., Ed.; Nauka: Moscow, Russia, 1984; pp. 72–83. (In Russian) [Google Scholar]
- McCann, T.; Chalot-Prat, F.; Saintot, A. The Early Mesozoic evolution of the Western Greater Caucasus (Russia): Triassic-Jurassic sedimentary and magmatic history. Geol. Soc. Spec. Publ. 2010, 340, 181–238. [Google Scholar] [CrossRef]
- Saintot, A.; Brunet, M.-F.; Yakovlev, F.; Sebrier, M.; Stephenson, R.; Ershov, A.; Chalot-Prat, F.; McCann, T. The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geol. Soc. Mem. 2006, 32, 277–289. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Hasterok, D.; Halpin, J.A.; Collins, A.S.; Hand, M.; Kreemer, C.; Gard, M.G.; Glorie, S. New Maps of Global Geological Provinces and Tectonic Plates. Earth Sci. Rev. 2022, 231, 104069. [Google Scholar] [CrossRef]
- Ruban, D.A. The Greater Caucasus—A Galatian or Hanseatic Terrane? Comment on "The formation of Pangea" by G.M. Stampfli, C. Hochard, C. Vérard, C. Wilhemand J. von Raumer Tectonophysics 593 (2013) 1–19]. Tectonophysics 2013, 608, 1442–1444. [Google Scholar] [CrossRef]
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.; Ogg, G. (Eds.) Geologic Time Scale 2020; Elsevier: Amsterdam, Fhe Netherlands, 2020; p. 1390. [Google Scholar]
- Ruban, D.A.; Zorina, S.O.; Rebezov, M.B. Dispersed geoheritage points of the Lagonaki Highland, SW Russia: Contribution to local geoheritage resource. Geosciences 2019, 9, 367. [Google Scholar] [CrossRef]
- Panek, N. Geotope protection and Geoparks in Germany—A critical inventory. Nat. Und Landsch. 2018, 50, 182–191. [Google Scholar]
- Varriale, R.; Genovese, L.; Aldighieri, B. “Diffused Geoparks”: Territorial Integration as Solution for a Shared Sustainable Growth Based on Geotourism in Italy, Japan and Tunisia. Heritage 2022, 5, 2083–2105. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Carcavilla, L.; Díaz-Martínez, E.; Erikstad, L.; García-Cortés, Á. Valuation of geoheritage in Europe. Bol. Parana. Geosci. 2013, 70, 28–40. [Google Scholar]
- Carrión-Mero, P.; Dueñas-Tovar, J.; Jaya-Montalvo, M.; Berrezueta, E.; Jiménez-Orellana, N. Geodiversity assessment to regional scale: Ecuador as a case study. Environ. Sci. Policy 2022, 136, 167–186. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Motta Garcia, M.D.G.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Ruban, D.A. On the duality of marine geoheritage: Evidence from the Abrau area of the Russian Black Sea coast. J. Mar. Sci. Eng. 2021, 9, 921. [Google Scholar] [CrossRef]
- Štrba, L.; Rybar, P.; Balaz, B.; Molokac, M.; Hvizdak, L.; Krsak, B.; Lukac, M.; Muchova, L.; Tometzova, D.; Ferencikova, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A. Geoheritage meaning of artificial objects: Reporting two new examples from Russia. Heritage 2021, 4, 2721–2731. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Chaitsky, V.P.; Popkov, V.I.; Popkov, I.V.; Pinchuk, T.N. Triassic of the Northern Caucasus. Geol. Geogr. I Glob. Energiya 2020, 77, 11–21. (In Russian) [Google Scholar]
- Gaetani, M.; Garzanti, E.; Poline, R.; Kiricko, Y.; Korsakhov, S.; Cirilli, S.; Nicora, A.; Rettori, R.; Larghi, C.; Bucefalo Palliani, R. Stratigraphic evidence for Cimmerian events in NW Caucasus (Russia). Bull. Société Géologique Fr. 2005, 176, 283–299. [Google Scholar] [CrossRef]
- Rostovtsev, K.O.; Savel’eva, L.M.; Efimova, N.A.; Shvemberger, Y.N. Decision of the 2nd Interdepartmental Regional Stratigraphical Maeeting on the Mesozoic of the Caucasus (Triassic); VSEGEI: Leningrad, Russia, 1979. (In Russian) [Google Scholar]
- Callahan, G.; Johnson, M.E.; Guardado-France, R.; Ledesma-Vázquez, J. Upper Pleistocene and Holocene storm deposits eroded from the granodiorite coast on Isla San Diego (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2021, 9, 555. [Google Scholar] [CrossRef]
- Dewey, J.F.; Ryan, P.D. Storm, rogue wave, or tsunami origin for megaclast deposits in western Ireland and North Island, New Zealand? Proc. Natl. Acad. Sci. USA 2017, 114, E10639–E10647. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Ledesma-Vázquez, J. Evaluation of boulder deposits linked to late Neogene hurricane events. J. Mar. Sci. Eng. 2021, 9, 1278. [Google Scholar] [CrossRef]
- Lorang, M.S. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis. Mar. Geol. 2011, 283, 90–97. [Google Scholar] [CrossRef]
- Noormets, R.; Felton, E.A.; Crook, K.A.W. Sedimentology of rocky shorelines: 2 Shoreline megaclasts on the north shore of Oahu, Hawaii—origins and history. Sediment. Geol. 2002, 150, 31–45. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Andrade, C.; Freitas, M.C.; Costa, P.; Taborda, R.; Janardo, C.; Neves, R. Transport of large boulders quarried from shore platforms of the Portuguese west coast. J. Coast. Res. 2011, 64, 1871–1875. [Google Scholar]
- Terry, J.P.; Lau, A.Y.A.; Nguyen, K.A.; Liou, Y.-A.; Switzer, A.D. Clustered, Stacked and Imbricated Large Coastal Rock Clasts on Ludao Island, Southeast Taiwan, and Their Application to Palaeotyphoon Intensity Assessment. Front. Earth Sci. 2021, 9, 792369. [Google Scholar] [CrossRef]
- Ruban, D.A. The Permian/Triassic mass extinction among brachiopods in the Northern Caucasus (northern Palaeo-Tethys): A tentative assessment. Geobios 2010, 43, 355–363. [Google Scholar] [CrossRef]
- Haq, B.U. Triassic Eustatic Variations Reexamined. GSA Today 2018, 28, 4–9. [Google Scholar] [CrossRef]
- Ruban, D.A. Basal Liassic of the Belaya River watershed (North-Western Caucasus). Nautchnaja Mysl’ Kavkaza. Mezhdistsiplinarnye I Spetsial’nye Issled. 2007, 2, 95–97. (In Russian) [Google Scholar]
- Nenakhov, V.M.; Zhabin, A.V.; Nikitin, A.V.; Bondarenko, S.V. Internal structure of the tectonic zone of the northern frame of the Dakh Crystalline Massif (Western Caucasus). Vestn. Voronezhskogo Gos. Universiteta. Seriya Geol. 2019, 1, 5–14. (In Russian) [Google Scholar]
- Chepurnoy, E.A. Sedimentary rocks of the northern contact of the Dakh Crystalline Uplift (Adygeya). In Praktika Geologov na Proizvodstve; Granovskaya, N.V., Ed.; SFU: Rostov-on-Don, Russia, 2021; pp. 132–134. (In Russian) [Google Scholar]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Panov, D.i.; Stafeev, A.N.; Yutsis, V.V. Early Jurassic stage in the development of the Northern Caucasus and the Ciscaucasus. Bull. Mosc. Soc. Naturalists. Geol. Ser. 1996, 6, 3–14. (In Russian) [Google Scholar]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Sankt-Peterburg, Russia, 1998. (In Russian) [Google Scholar]
- Mikhailenko, A.V.; Ruban, D.A.; Yashalova, N.N.; Rebezov, M.B. The Unique Granite Gorge in Mountainous Adygeya, Russia: Evidence of Big and Complex Geosite Disproportions. Geosciences 2019, 9, 372. [Google Scholar] [CrossRef]
- Drushits, V.V.; Mikhailova, I.A. Biostratigraphy of the Lower Cretaceous of the Northern Caucasus; MGU: Moscow, Soviet Union, 1966. (In Russian) [Google Scholar]
- Prosorovskaya, E.L. (Ed.) Stratigraphical Dictionary of the USSR. Triassic, Jurassic, Cretaceous; Nedra: Leningrad, Soviet Union, 1979. (In Russian) [Google Scholar]
- Mikerina, T.B.; Pinchuk, T.N. Facies of Cretaceous deposits of the northern part of the Western Ciscaucasus. In Melovaya Sistema Rossii i Blizhnego Zarubezh’ya: Problemy Stratigrafii i Paleogeografii; Baraboshkin, E.Y., Guzhikov, A.Y., Eds.; MAOBTI: Magadan, Russia, 2020; pp. 171–174. (In Russian) [Google Scholar]
- Wakita, K. Geology and tectonics of Japanese islands: A review—The key to understanding the geology of Asia. J. Asian Earth Sci. 2013, 72, 75–87. [Google Scholar] [CrossRef]
- Seghedi, A.; Andrășanu, A.; Rădan, S. The Transylvanian dinosaur museum project: The contribution of Geoecomar to valorize and promote the paleontological heritage of Romania. Geo. Eco. Mar. 2017, 23, 145–164. [Google Scholar]
- Wolniewicz, P. Bringing the History of the Earth to the Public by Using Storytelling and Fossils from Decorative Stones of the City of Poznań, Poland. Geoheritage 2019, 11, 1827–1837. [Google Scholar] [CrossRef]
- Bratton, A.; Smith, B.; McKinley, J.; Lilley, K. Expanding the Geoconservation Toolbox: Integrated Hazard Management at Dynamic Geoheritage Sites. Geoheritage 2013, 5, 173–183. [Google Scholar] [CrossRef]
- Cayla, N. An Overview of New Technologies Applied to the Management of Geoheritage. Geoheritage 2014, 6, 91–102. [Google Scholar] [CrossRef]
- de Oliveira, G.H.; Servidoni, L.E.; Spalevic, V.; Gaspar Junior, L.A.; Mincato, R.L. Geological heritage management and preservation instruments: Case study of the municipality of Conceicao da Aparecida, Minas Gerais—Brazil. Agric. For. 2021, 567, 71–82. [Google Scholar]
- Erikstad, L. Geoheritage and geodiversity management—the questions for tomorrow. Proc. Geol. Assoc. 2013, 124, 713–719. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; García-Ortiz, E.; Fernández-Martínez, E. Anthropic Threats to Geological Heritage: Characterization and Management: A Case Study in the Dinosaur Tracksites of La Rioja (Spain). Geoheritage 2016, 8, 135–153. [Google Scholar] [CrossRef]
- Lech, R.R.; Marcus, A.; Reinoso, J.R. Science and tourism together in the management for the preservation of the geological heritage. Ser. Correl. Geol. 2018, 34, 35–41. [Google Scholar]
- Lima, E.A.; Machado, M.; Guerreiro, M.; Nunes, J.C.; Costa, M.P. Geological Heritage Management in Small Islands: The Example of the Azores UNESCO Global Geopark (Portugal). Geoheritage 2018, 10, 659–671. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Garcia, M.D.G.M.; Reynard, E.; Rosa, P.A.D.S. Integrating geoheritage into the management of protected areas: A case study of the Itatiaia National Park, Brazil. Int. J. Geoheritage Parks 2022, 10, 252–272. [Google Scholar] [CrossRef]
- Pál, M.; Albert, G. Examining the Spatial Variability of Geosite Assessment and Its Relevance in Geosite Management. Geoheritage 2021, 13, 8. [Google Scholar] [CrossRef]
- Prosser, C.; Murphy, M.; Larwood, J. Geological Conservation: A Guide to Good Practice; English Nature: Peterborough, UK, 2006.
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Spyrou, E.; Triantaphyllou, M.; Tsourou, T.; Vassilakis, E.; Asimakopoulos, C.; Konsolaki, A.; Markakis, D.; Marketou-Galari, D.; Skentos, A. Assessment of Geological Heritage Sites and Their Significance for Geotouristic Exploitation: The Case of Lefkas, Meganisi, Kefalonia and Ithaki Islands, Ionian Sea, Greece. Geosciences 2022, 12, 55. [Google Scholar] [CrossRef]
- Began, M.; Visnic, T.; Djokic, M.; Vasiljevic, D.A. Interpretation Possibilities of Geoheritage in Southeastern Serbia—Gorge and Canyon Study. Geoheritage 2017, 9, 237–249. [Google Scholar] [CrossRef]
- Bruno, B.C.; Wallace, A. Interpretive Panels for Geoheritage Sites: Guidelines for Design and Evaluation. Geoheritage 2019, 11, 1315–1323. [Google Scholar] [CrossRef]
- Hose, T.A. 3G’s for Modern Geotourism. Geoheritage 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Dzhimova, S.B.; Bayanduryan, G.L. Evaluation of tourism complex functioning in the Republic of Adygeya. Ekon. I Predprin. 2021, 127, 418–421. (In Russian) [Google Scholar]
- Abratis, M.; Viereck, L.; Büchner, J.; Tietz, O. Route to the volcanoes in Germany—conceptual model for a geotourism project interconnecting geosites of Cenozoic volcanism. Z. Der Dtsch. Ges. Fur Geowiss. 2015, 166, 161–185. [Google Scholar] [CrossRef]
- Bentivenga, M.; Palladino, G.; Prosser, G.; Guglielmi, P.; Geremia, F.; Laviano, A. A Geological Itinerary Through the Southern Apennine Thrust Belt (Basilicata—Southern Italy). Geoheritage 2017, 9, 1–17. [Google Scholar] [CrossRef]
- Bucci, F.; Tavarnelli, E.; Novellino, R.; Palladino, G.; Guglielmi, P.; Laurita, S.; Prosser, G.; Bentivenga, M. The History of the Southern Apennines of Italy Preserved in the Geosites Along a Geological Itinerary in the High Agri Valley. Geoheritage 2019, 11, 1489–1508. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Alonso, C.Q. Urban geoturism rutes in Icod de Los Vinos (Tenerife, Canary Islands, Spain): A proposal. Cuad. Geogr. 2016, 55, 320–343. [Google Scholar]
- Gałka, E. Geotourist potential of the loess relief of the projected Kamienna Valley Geopark. Prz. Geol. 2018, 66, 55–64. [Google Scholar]
- Palladino, G.; Prosser, G.; Bentivenga, M. The Geological Itinerary of Sasso di Castalda: A Journey into the Geological History of the Southern Apennine Thrust-belt (Basilicata, Southern Italy). Geoheritage 2013, 5, 47–58. [Google Scholar] [CrossRef]
- Migoń, P.; Duszyński, F.; Jancewicz, K.; Różycka, M. From Plateau to Plain—Using Space-for-Time Substitution in Geoheritage Interpretation, Elbsandsteingebirge, Germany. Geoheritage 2019, 11, 839–853. [Google Scholar] [CrossRef] [Green Version]
Elements/Criteria | Essence | Significance |
---|---|---|
Name | Name of geoheritage point, which may or may not correspond to the name of the geosite | Basic |
Geological outline | Brief geological characteristics (descriptions and interpretations) based on field investigations and literary evidence | |
Thematic outline | Relevance of geological peculiarities to thematic geoheritage | |
Spatial correspondence to geosite | Full correspondence, partial correspondence, or a tiny portion of a geosite | Essential |
Novelty of geosite * | Earlier-established geosite, newly proposed geosite, tentatively proposed geosite needing further examination | |
Contribution to geosite uniqueness | Whether this locality determines geosite uniqueness fully, partly, or minimally | |
Complexity | Coexistence of several geoheritage types | Technical |
Cohesion | Isolated position within the geosite or continuous links to the geosite | |
Accessibility | Outer and inner accessibility (sensu [40]) and seasonality of access | |
Vulnerability | No danger, potential danger, partial damage, or significant damage; danger/damage factor active or inactive | |
Interpretation needs | Clear to non-experts or only experts; professional guidance required or not | |
Aesthetics | Aesthetic-related features and their relative appeal to visitors’ sense of beauty (see aesthetic properties in [41]) | |
Importance | Interesting to research audience, students or schoolchildren, and tourists | Utilitarian |
Elements (see Figure 8 for More Information) | Approximate Time, h (Taking into Account the Quality of Roads) | Distance, km | Height Range, m | ||
---|---|---|---|---|---|
Bus * | Car | Hiking, Examining, and Discussing | |||
K -> Attraction 1 | 1.5 | 1 | - | 30 | <200 |
D -> Attraction 1 | 1 | 0.7 | - | 20 | <200 |
Attraction 1 | - | - | 1 | 0.3 | <25 |
Sub-route A | 1.5 | 1 | - | 30 | ~100 |
Attraction 2 | - | - | 0.5 | 0.1 | <10 |
Sub-route B | 1.5 | 1 | - | 35 | ~200 |
Attraction 3 | - | - | 1.5 | 0.5 | <25 |
Attraction 3 -> D | 1 | 0.7 | - | 15 | ~200 |
Attraction 3 -> K | 0.5 | 0.5 | - | 5 | ~200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheritage and Geotourism. J. Mar. Sci. Eng. 2022, 10, 1300. https://doi.org/10.3390/jmse10091300
Ruban DA. Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheritage and Geotourism. Journal of Marine Science and Engineering. 2022; 10(9):1300. https://doi.org/10.3390/jmse10091300
Chicago/Turabian StyleRuban, Dmitry A. 2022. "Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheritage and Geotourism" Journal of Marine Science and Engineering 10, no. 9: 1300. https://doi.org/10.3390/jmse10091300
APA StyleRuban, D. A. (2022). Islands in the Caucasian Sea in Three Mesozoic Time Slices: Novel Dimension of Geoheritage and Geotourism. Journal of Marine Science and Engineering, 10(9), 1300. https://doi.org/10.3390/jmse10091300