# Ship Path Planning Based on Buoy Offset Historical Trajectory Data

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Multiplication Seasonal SARIMA Model

#### 2.1. ARIMA Model

#### 2.2. Stochastic Seasonal Model

#### 2.3. Multiplication Seasonal Model

## 3. Ship Path-Planning Method for Random Motion of Buoy

#### 3.1. Field of Buoy Offset

#### 3.2. Risk Field of Ship Collision

## 4. Buoy Offset Position Prediction

#### 4.1. Data Verification and Processing

#### 4.2. Parameter Selection

#### 4.3. Offset Position Prediction

#### 4.4. Error Analysis

## 5. Path-Planning Simulation

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Yoo, Y.; Lee, J.S. Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of Vessel Traffic Service Area. J. Mar. Sci. Eng.
**2021**, 9, 1143. [Google Scholar] [CrossRef] - Rong, H.; Teixeira, A.P.; Soares, C.G. Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics. Reliab. Eng. Syst. Saf.
**2021**, 209, 107463. [Google Scholar] [CrossRef] - Luong, T.N.; Hwang, S.; Im, N. Harbour Traffic Hazard Map for real-time assessing waterway risk using Marine Traffic Hazard Index. Ocean Eng.
**2021**, 239, 109884. [Google Scholar] [CrossRef] - Kim, J.K. Semi-Continuous Spatial Statistical Analysis Using AIS Data for Vessel Traffic Flow Characteristics in Fairway. J. Mar. Sci. Eng.
**2021**, 9, 4–378. [Google Scholar] [CrossRef] - Piao, Z.; Guo, C.; Sun, S. Research into the Automatic Berthing of under actuated Unmanned Ships under Wind Loads Based on Experiment and Numerical Analysis. J. Mar. Sci. Eng.
**2019**, 7, 300. [Google Scholar] [CrossRef] [Green Version] - Lee, H.W.; Roh, M.I.; Kim, K.S. Ship route planning in Arctic Ocean based on POLARIS. Ocean Eng.
**2021**, 234, 109297. [Google Scholar] [CrossRef] - Lazarowska, A. Ship’s trajectory planning for collision avoidance at sea based on ant colony optimization. J. Navig.
**2015**, 68, 291–307. [Google Scholar] [CrossRef] [Green Version] - Ma, Y.; Feng, W.; Mao, Z.Y. Path planning of UUV based on HQPSO algorithm with considering the navigation error. Ocean Eng.
**2021**, 244, 110048. [Google Scholar] [CrossRef] - MahmoudZadeh, S.; Yazdani, A.M.; Sammut, K.; Powers, D. Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms. Appl. Soft Comput.
**2018**, 70, 929–945. [Google Scholar] [CrossRef] [Green Version] - Song, J.; Hao, C.; Su, J.C. Path planning for unmanned surface vehicle based on predictive artificial potential field. Int. J. Adv. Robot. Syst.
**2020**, 17, 2. [Google Scholar] [CrossRef] [Green Version] - Lyh, H.G.; Yin, Y. COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential Fields. J. Navig.
**2019**, 72, 588–608. [Google Scholar] - Luis, S.Y.; Reina, D.G.; Marin, S.L.T. A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles: The Ypacarai Lake Patrolling Case. IEEE Access
**2021**, 9, 17084–17099. [Google Scholar] [CrossRef] - Da Silva, A.G.; Dos Santos, D.H.; De Negreiros, A.P.F.; Silva, J.M.V.B.D.S.; Gonçalves, L.M.G. High-Level Path Planning for an Autonomous Sailboat Robot Using Q-Learning. Sensors
**2020**, 20, 6. [Google Scholar] - Luis, S.Y.; Reina, D.G.; Marin, S.L.T. A Deep Reinforcement Learning Approach for the Patrolling Problem of Water Resources Through Autonomous Surface Vehicles: The Ypacarai Lake Case. IEEE Access
**2020**, 8, 204076–204093. [Google Scholar] [CrossRef] - Guo, S.Y.; Zhang, X.G.; Zheng, Y.S.; Du, Y. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning. Sensors
**2020**, 20, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lazarowska, A. Comparison of Discrete Artificial Potential Field Algorithm and Wave-Front Algorithm for Autonomous Ship Trajectory Planning. IEEE Access
**2021**, 8, 221013–221026. [Google Scholar] [CrossRef] - Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning. Robot. Auton. Syst.
**2018**, 107, 71–86. [Google Scholar] [CrossRef] [Green Version] - Meyer, E.; Heiberg, A.; Rasheed, A.; San, O. COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle Using Deep Reinforcement Learning. IEEE Access
**2020**, 8, 165344–165364. [Google Scholar] [CrossRef] - Zaccone, R. COLREG-Compliant Optimal Path Planning for Real-Time Guidance and Control of Autonomous Ships. J. Mar. Sci. Eng.
**2021**, 9, 405. [Google Scholar] [CrossRef] - Shah, B.C.; Gupta, S.K. Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment. IEEE J. Ocean. Eng.
**2020**, 45, 813–830. [Google Scholar] [CrossRef] - Lyridis, D.V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-modality constraints. Ocean Eng.
**2021**, 241, 109890. [Google Scholar] [CrossRef] - Ahmed, B.; Mangalathu, S.; Jeon, J.S. Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks. J. Build. Eng.
**2022**, 46, 103737. [Google Scholar] [CrossRef] - Matic, P.; Bego, O.; Males, M. Complex Hydrological System Inflow Prediction using Artificial Neural Network. Teh. Vjesn. Tech. Gaz.
**2022**, 29, 172–177. [Google Scholar] - Yang, Y.; Fan, C.J.; Chen, L. IPMOD: An efficient outlier detection model for high-dimensional medical data streams. Expert Syst. Appl.
**2022**, 191, 116212. [Google Scholar] [CrossRef] - Bhanja, S.; Das, A. A Black Swan event-based hybrid model for Indian stock markets’ trends prediction. Innov. Syst. Softw. Eng.
**2022**, 1–15. [Google Scholar] [CrossRef] - Yu, W.W.; Xing, J.M. Sports Event Model Evaluation and Prediction Method Using Principal Component Analysis. Wirel. Commun. Mob. Comput.
**2022**, 2022, 9351522. [Google Scholar] [CrossRef] - Li, J.X.; Zhou, A.J.; Liao, Y.F. Forest Ecological Diversity Change Prediction Discrete Dynamic Model. Discret. Dyn. Nat. Soc.
**2022**, 2022, 4869363. [Google Scholar] [CrossRef] - Liu, L.; Chen, W.Z.; Li, Y.B. Comprehensive Analysis of Pyroptosis-Related Long Noncoding RNA Immune Infiltration and Prediction of Prognosis in Patients with Colon Cancer. J. Oncol.
**2022**, 2022, 2035808. [Google Scholar] [CrossRef] - Zeng, Z.; Yan, H.; Fu, A.M.N. Time-series prediction based on pattern classification. Artif. Intell. Eng.
**2001**, 15, 61–69. [Google Scholar] [CrossRef] - Yuan, K.X.; Liu, J.; Yang, S.C. Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps. Knowl.-Based Syst.
**2020**, 206, 106359. [Google Scholar] [CrossRef] - Sebastian, R.; Thomas, N. A fractal interpolation approach to improve neural network predictions for difficult time series data. Expert Syst. Appl.
**2021**, 169, 114474. [Google Scholar] - Her, M.T.; Chung, C.C.; Lin, C.T. Ship Price Predictions of Panamax Second-Hand Bulk Carriers Using Grey Models. J. Mar. Sci. Technol. Taiwan
**2019**, 27, 229–234. [Google Scholar] - Sahoo, A.; Samantatay, S.; Ghose, D.K. Multilayer perceptron and support vector machine trained with grey wolf optimiser for predicting floods in Barak river, India. J. Earth Syst. Sci.
**2022**, 131, 85. [Google Scholar] [CrossRef] - Paquet, E.; Soleymani, F. QuantumLeap: Hybrid quantum neural network for financial predictions. Expert Syst. Appl.
**2022**, 195, 116583. [Google Scholar] [CrossRef] - Oztunc, K.; Oznur Kaymak, Y. Prediction of crude oil prices in COVID-19 outbreak using real data. Chaos Solitons Fractals
**2022**, 158, 111990. [Google Scholar] [CrossRef] - Thiruchelvam, L.; Dass, S.C.; Asirvadam, S.; Daud, H.; Gill, B.S. Determine neighboring region spatial effect on dengue cases using ensemble ARIMA models. Sci. Rep.
**2021**, 11, 5873. [Google Scholar] [CrossRef] - Wu, Z.Z.; Ren, L.Z.; Zhou, S.B.; Zhang, Y.; Xu, W.; Zhang, H. The Offset Azimuth Prediction of Light Buoy Based on Markov Chain Optimization Multiplicative Seasonal Model. Math. Probl. Eng.
**2022**, 2022, 1250206. [Google Scholar] [CrossRef] - Koyuncu, K.; Tavacioglu, L.; Gokmen, N.; Arican, U. Forecasting COVID-19 impact on RWI/ISL container throughput index by using SARIMA models. Marit. Policy Manag.
**2021**, 48, 1096–1108. [Google Scholar] [CrossRef] - Zhou, D. Research on a Novel Dynamic and Fuzzy Ship Domain; Dalian Maritime University: Dalian, China, 2017. [Google Scholar]
- Dorta, M.; Sanchez, G. Bootstrap unit-root test for random walk with drift: The bsrwalkdrift command. Stata J.
**2021**, 21, 39–50. [Google Scholar] [CrossRef] - Adib, A.; Sheydaei, F.; Shoushtari, M.M.; Ashrafi, S.M. Using of gene expression programming method for prediction of daily components of tidal cycle in tidal rivers. Arab. J. Geosci.
**2021**, 14, 5. [Google Scholar] [CrossRef] - Liu, Y.Q.; Qie, Z.H.; Han, W.M. Fitting model optimization test curve based on the AIC criterion. J. Hebei Agric. Univ.
**2017**, 40, 120–124. [Google Scholar] - Rahmanian, V.; Bokaie, S.; Haghdoost, A. Predicting cutaneous leishmaniasis using SARIMA and Markov switching models in Isfahan, Iran: A time-series study. Asian Pac. J. Trop. Med.
**2021**, 14, 83–93. [Google Scholar]

Augmented Dickey–Fuller Test Statistic | t-Statistic | Prob | |
---|---|---|---|

−4.16208806 | 0.000763 | ||

Test Critical Values: | 1% Level | −3.51273806 | - |

5% Level | −2.89748987 | - | |

10% Level | −2.58594873 | - |

Augmented Dickey–Fuller Test Statistic | t-Statistic | Prob | |
---|---|---|---|

−8.3298612 | 3.39 × 10^{−13} | ||

Test Critical Values: | 1% Level | −3.5117123 | - |

5% Level | −2.8970475 | - | |

10% Level | −2.5857126 | - |

Model Parameter | AIC Results |
---|---|

SARIMA (0,1,0) × (0,1,0,24) | AIC = 570.04 |

SARIMA (0,1,0) × (0,1,1,24) | AIC = 360.00 |

SARIMA (0,1,0) × (1,1,0,24) | AIC = 371.57 |

SARIMA (0,1,0) × (1,1,1,24) | AIC = 365.49 |

SARIMA (0,1,1) × (0,1,0,24) | AIC = 505.78 |

SARIMA (0,1,1) × (0,1,1,24) | AIC = 320.37 |

SARIMA (0,1,1) × (1,1,0,24) | AIC = 338.86 |

SARIMA (0,1,1) × (1,1,1,24) | AIC = 324.48 |

SARIMA (1,1,0) × (0,1,0,24) | AIC = 548.06 |

SARIMA (1,1,0) × (0,1,1,24) | AIC = 346.20 |

SARIMA (1,1,0) × (1,1,0,24) | AIC = 348.26 |

SARIMA (1,1,0) × (1,1,1,24) | AIC = 350.24 |

SARIMA (1,1,1) × (0,1,0,24) | AIC = 503.45 |

SARIMA (1,1,1) × (0,1,1,24) | AIC = 321.42 |

SARIMA (1,1,1) × (1,1,0,24) | AIC = 331.35 |

SARIMA (1,1,1) × (1,1,1,24) | AIC = 325.29 |

Model Parameter | AIC Results |
---|---|

SARIMA (0,1,0) × (0,1,0,24) | AIC = 532.17 |

SARIMA (0,1,0) × (0,1,1,24) | AIC = 329.45 |

SARIMA (0,1,0) × (1,1,0,24) | AIC = 344.67 |

SARIMA (0,1,0) × (1,1,1,24) | AIC = 338.06 |

SARIMA (0,1,1) × (0,1,0,24) | AIC = 467.86 |

SARIMA (0,1,1) × (0,1,1,24) | AIC = 299.24 |

SARIMA (0,1,1) × (1,1,0,24) | AIC = 318.07 |

SARIMA (0,1,1) × (1,1,1,24) | AIC = 305.10 |

SARIMA (1,1,0) × (0,1,0,24) | AIC = 510.44 |

SARIMA (1,1,0) × (0,1,1,24) | AIC = 324.85 |

SARIMA (1,1,0) × (1,1,0,24) | AIC = 330.63 |

SARIMA (1,1,0) × (1,1,1,24) | AIC = 331.37 |

SARIMA (1,1,1) × (0,1,0,24) | AIC = 465.20 |

SARIMA (1,1,1) × (0,1,1,24) | AIC = 301.17 |

SARIMA (1,1,1) × (1,1,0,24) | AIC = 312.63 |

SARIMA (1,1,1) × (1,1,1,24) | AIC = 307.10 |

Name | MMSI | Coordinate | Course | Diameter of the Ship |
---|---|---|---|---|

Minhuiyu 11512 | 880011590 | (119°2′40.848″ E, 24°54′52.704″ N) | 65 | 23 m |

Minhuiyu 01366 | 412452752 | (119°2′46.032″ E, 24°54′53.568″ N) | 270° | 23 m |

Name | Sink Stone Position | Diameter (L) | Watermarking | Free-Board Depth |
---|---|---|---|---|

Meizhou Bay No.1 | (119°2′45.420″ E, 24°54′54.120″ N) | 2.4 m | >3.0 m | 0.9 m |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, S.; Wu, Z.; Ren, L.
Ship Path Planning Based on Buoy Offset Historical Trajectory Data. *J. Mar. Sci. Eng.* **2022**, *10*, 674.
https://doi.org/10.3390/jmse10050674

**AMA Style**

Zhou S, Wu Z, Ren L.
Ship Path Planning Based on Buoy Offset Historical Trajectory Data. *Journal of Marine Science and Engineering*. 2022; 10(5):674.
https://doi.org/10.3390/jmse10050674

**Chicago/Turabian Style**

Zhou, Shibo, Zhizheng Wu, and Lüzhen Ren.
2022. "Ship Path Planning Based on Buoy Offset Historical Trajectory Data" *Journal of Marine Science and Engineering* 10, no. 5: 674.
https://doi.org/10.3390/jmse10050674