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Abstract: In the existing research on the intelligent navigation of ships, navigation route planning
often regards light buoys as fixed obstructions. However, due to factors such as water ripples, the
position of the buoys keeps periodically changing. If the buoys are set to a fixed range of avoidance
areas in the process of ship navigation, it is easy to allow a collision between the ship and the light
buoys. Therefore, based on historical motion trajectory data of the buoys, a SARIMA-based time-
series prediction model is proposed to estimate the offset position of a given buoy in a specified time.
Furthermore, the collision-free path planning approach is presented to dynamically recommend an
accurate sailing path. The results of the simulation experiment show that this method can effectively
deal with collisions of ships caused by the offset position of the light buoys during the navigation of
the large and low-speed autonomous ships.

Keywords: intelligent navigation; path planning; buoy; collision avoidance

1. Introduction

Research on marine traffic safety and efficiency has always been a challenging task in
the marine traffic transportation field. Various maritime accidents occur frequently, which
seriously affect the safety of life, property, and the ocean environment [1–4].

In recent years, with the rapid growth of artificial intelligence, cloud computing
and the Internet of Things (IoT), the applications of intelligent systems have been widely
integrated into people’s social lives. Similarly, artificial intelligence technologies have
been employed into the marine traffic field to help improve economic efficiency. Thereby,
autonomous navigation technology has become an important research topic. In intelligent
navigation systems, automatic route optimization based on electric nautical chart (ENC)
and weather forecast data is an intelligent navigation function which effectively helps to
improve the efficiency of the route plan [5].

However, during voyage optimization, some uncertainties are usually neglected. For
instance, light buoys are always regarded as fixed objects in the ENCs, but the positions of
the light buoys periodically change due to the wind and currents, which is not considered
in the automatic route plan. Therefore, exploring the position offset of the buoy is an
important and significant task in the route planning of autonomous ships.

There are many methods for ship path planning, such as the genetic algorithm [6,7],
particle swarm optimization algorithm [8,9], artificial potential field method [10,11], and
deep learning [12–14]. These methods can effectively enhance the navigation safety of ships.
GUO et al. [15] proposed an autonomous path-planning model based on DRL to realize the
intelligent path planning of unmanned ships in an unknown environment. The model has
good convergence speed and stability, but does not consider the ship motion model and the
actual verification environment. LAZAROWSKA et al. [16] employed the discrete artificial
potential field algorithm, which can generate a collision-free path in an environment
containing static and dynamic obstacles. However, in the simulation, the obstacles in
reality are often irregular. Carlucho et al. [17] proposed a deep RL framework for adaptive
control applications of AUVs based on an actor–critic goal-oriented deep RL architecture,
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which takes the available raw sensory information as input for the continuous control
actions, which are the low-level commands for the AUV’s thrusters. MEYER et al. [18]
proposed a deep reinforcement learning algorithm. It follows a desired path known a
priori while avoiding collisions with other ships along the way. ZACCONE [19] proposed
an optimal path-planning algorithm based on RRT *, and discussed collision avoidance,
compliance with COLREG regulations, path feasibility, and optimality in detail. However,
in terms of simulation, the Motion-Planning, Guidance and Control (MPGC) system can
be regarded as a medium-range or short-range collision-avoidance system, which should
be integrated with a higher-level offline path-planning system in order to manage remote
routes. SHAH et al. [20] developed an acceptable heuristic that takes into account large
islands while estimating costs and provides better estimates than Euclidean distance-based
heuristics. However, the algorithm has some drawbacks in solving some time-varying
obstacles. LYRIDIS et al. [21] proposed an improved ant colony optimization algorithm to
deal with the local path planning of obstacle avoidance by considering wind, waves, and
obstacles. However, only obstacles with elliptical trajectories are considered in this paper,
which does not have universality.

In recent years, more and more scholars have been using the time-series prediction
model to solve problems in natural disasters, hydrology, medicine, chemistry, transporta-
tion, economy, etc. [22–25]. YU et al. [26] proposed a PCA prediction method for sports
event model evaluation, aiming at the problems of poor average fitness and low accuracy of
risk prediction of traditional methods. The results show that the method has good average
fitness. LI et al. [27] constructed a WebGIS scheme of a forest information system and
open-source network geographic information system oriented to spatial information field
and supported OGC, and used the grey model to predict the development trend. The
results showed that the method realized the double growth of forest area and forest volume,
and the forest coverage rate reached a new level. LIU et al. [28] used the data from TCGA to
create multi-gene features, and evaluated the predictive significance of each lncRNA related
to cell proptosis for survival. ZENG et al. [29] proposed a time-series prediction method
based on pattern analysis, and used the probability relaxation method to classify the proba-
bility vectors of the basic pattern. YUAN et al. [30] proposed a Kernel-HFCM model based
on kernel mapping and HFFCM to predict time series inspired by the kernel method and
SVR. SEBASTIAN et al. [31] proposed a fractal interpolation method which can generate
finer-grained time series from insufficient data sets. HER et al. [32] applied the grey theory
model GM (1,1) to the prediction of the price of Panama-type two-wheeled ships, in order to
deal with bulk carriers with different periods and different sample sizes. SAHOO et al. [33]
proposed the MLP-GWO model and the SVM-GWO model, and compared them with
the traditional support vector machine (SVM) model and multilayer perceptron (MLP)
model, respectively. The research results show that the model can effectively predict floods.
PAQUET et al. [34] proposed a QuantumLeap system for financial forecasting, and studies
have shown that this method has better forecasting results. OZTUNC et al. [35] proposed
a crude oil price-prediction model combining fuzzy time series and a maximum integer
function. The research results show that this method can accurately predict crude oil prices.

The above research methods can effectively predict the target to some extent, but there
are also some shortcomings. In the sports events evaluation model, only a certain area was
to collect samples and it did not expand the collection area, so it has a certain one-sidedness.
LI et al. [27] did not study the explanation of the dynamic economic model of sustainable
development of forest resources. It is not enough to rely on these qualitative discussions or
simple quantitative research. LIU [28] did not carry out experiments to prove the difference
in molecular transcription and expression levels, the data of this study are based only
on TCGA data, and the data source is relatively singlular. The pattern analysis method
proposed by ZENG [29] has limitations in predicting the trend of time-series signals, and
it is difficult to predict the value of time-series signals. The Kernel-HFCM model has no
suitable method to evaluate KFTS. The grey GM (1,1) model has a strong dependence on
historical data and cannot consider the relationship between various factors. The BP-ANN
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model easily falls into the local optimum and converges too slowly. The Bayesian model
needs to know the prior probability in advance, and in most cases, the prior probability
is taken from the assumption. Therefore, in the case of the assumed prior model, it easily
leads to poor prediction accuracy and high requirements for the form of input data.

In this paper, the SARIMA (Seasonal Autoregressive Integrated Moving Average,
SARIMA) model is introduced to predict the motion of the light float, which is used for
the path planning of the ship. The main reason for this is that the SARIMA model is
an important time-series analysis method, and it can effectively deal with the seasonal
tendency, random interference characteristics, and the correlation of the data to establish
the time-series prediction motion model of the buoys. Due to the regularity and seasonality
of the offset position of the buoys, this paper proposes a ship path-planning method based
on the fusion of the historical trajectory data of the buoys and the SARIMA model, to deal
with the ship collision caused by the offset of the buoys during the navigation of a broad
low-speed ship.

2. Multiplication Seasonal SARIMA Model
2.1. ARIMA Model

The ARIMA [36,37] model is a time-series prediction method proposed by Jenkins and
Box, which is mainly used to study both trend and seasonal time series. The basic form
is ARIMA (p, d, q), where p, d, and q represent the non-seasonal regression order, moving
average order, and non-seasonal moving average order, respectively. The ARIMA (p, d, q)
model is composed of an autoregressive model AR (p) and moving average model MA (q),
and the formula is shown in Equation (1).{

AR(p) = φ(β)xt = (1− φ1β1 − φ2β2 − · · · − φpβp)xt
MA(q) = Θ(β)εt = (1− θ1β1 − θ2β2 − · · · − θqβq)εt

(1)

where β is a delay operator; εt is zero mean white noise sequence; xt is time series; φ(β) is a
polynomial of self-regression coefficients; Θ(β) is a moving average coefficient polynomial;
ϕ1, ϕ2 · · · ϕp and θ1, θ2 · · · θq are the corresponding coefficients, respectively.

After the integration of AR (p) and MA (q), the ARIMA (p, d, q) model is obtained after
the d-order difference of its trend, as shown in Equation (2).

φ(β)xt∇d = Θ(β)εt (2)

where ∇ is a difference operator; ∇d is trend difference; ∇d = (1− β)d.

2.2. Stochastic Seasonal Model

The stochastic seasonal model ARIMA (P, D, Q) is a time series that only contains
periodicity and trend after the integration of AR (P) seasonal autoregressive model and
MA (Q) seasonal moving average model through seasonal periodic difference. The general
forms of AR (P) and MA (Q) are shown in Equation (3).{

AR(P) = U(βS)xt = (1− u1βS − u2β2S − · · · − upβPS)xt
MA(Q) = V(βS)εt = (1− v1βS − v2β2S − · · · − vqβQS)εt

(3)

where U(βS) is a polynomial of seasonal autoregressive coefficients; V(βS) is a polynomial
of seasonal moving average coefficients; u1, u1 · · · up and v1, v1 · · · vp are the corresponding
coefficients, respectively.

After the integration of AR (P) and MA (Q), the seasonal and periodic parts of AR (P)
and MA (Q) are processed by S and D order difference, and the ARIMA (P, D, Q) S model
is obtained. The formula is shown in Equation (4).

∇S∇DU(βS)xt = V(βS)εt (4)
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where ∇D is the periodic difference; ∇S is seasonal difference.

2.3. Multiplication Seasonal Model

The multiplication seasonal model [38] refers to the multiplication of the difference
between the autoregressive moving average model and the stochastic seasonal model. It
is an important method to deal with time series with seasonality and trend. The general
form is SARIMA (p, d, q) × (P, D, Q) s. The parameters p, d, q, P, D, Q, and S represent the
non-seasonal regression order, the moving average order, the non-seasonal moving average
order, the seasonal autoregressive order, the seasonal difference order, the seasonal average
moving order, and the unit cycle, respectively. The general form is shown in Equation (5).

∇d∇D
S xt = [V(βS)Θ(β)εt]/[φ(β)U(βS)] (5)

where ∇D
S = (1− βS)

D.

3. Ship Path-Planning Method for Random Motion of Buoy

The buoy is a navigational aid sign that indicates the navigation channel, and the
marker to float and avoid danger. It plays an important role in ensuring the safety of a
ship’s navigation. However, due to external forces such as wind, current, and ship traveling
waves, the position of the buoy moves randomly. Therefore, the ship cannot rely on the
buoy for navigation. In general, the navigator uses the chart to determine the position
of the buoy. Because the position of the buoy marked on the chart is the position of the
sinking rock of the buoy issued by the aviation security department, and the navigator sees
the position of the floating body, the floating position moves randomly under the action
of external force, which is not consistent with the position of the sinking rock. Therefore,
when the ship approaches the buoy, the position of the buoy is generally seen as not the
position marked on the chart, which will cause certain interference for the ship to avoid
the buoy. In the context of the rapid development of unmanned ships, how to help ships
predict the movement of buoys during autonomous route planning and effectively avoid
them is an important task to ensure the safety of unmanned ships. In this section, an
autonomous route planning model for unmanned ships based on the random motion of
buoys is proposed to solve this problem.

This method is a combination of the SARIMA model, the ship domain model, and the
historical trajectory data of the light buoy. By decomposing the historical offset longitude
and latitude data of the buoy into offset distance data and offset azimuth data, the time
series based on offset azimuth and offset distance is constructed, respectively, and the
time series are input into the SARIMA model. The stability of the time series is tested
by the unit root test method, and the requirements for the stability of the time series are
solved by differential processing. The optimal parameters are selected according to the
autocorrelation function, offset autocorrelation function, seasonal trend, random trend,
growth trend, and AIC minimum information criterion. After predicting the offset azimuth
and offset distance over the next 24 h, the offset coordinates of the buoy are inversed by
the Mercator projection coordinates, and the position range of the buoy offset in the future
is determined.

3.1. Field of Buoy Offset

As an indicator of ship navigation, the buoy plays an important role in the navigational
safety of the ship. However, due to factors such as tides, ripple waves, and human
collisions, the actual position of the buoy often deviates from the position of the sunken
stone. Therefore, in the path planning process of the ship, if the offset problem of the
buoy cannot be effectively dealt with, it will greatly affect the navigation safety of the ship.
How to accurately calculate the offset position of the buoy is the content introduced in this
section. The prediction process of the buoy offset is shown in Figure 1.
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Figure 1. Buoy offset position-prediction process.

According to the multiplication seasonal prediction model, the offset position of the
buoys over the next 24 h is predicted in order to delineate the area where the ship may
collide during navigation. The offset fields of some buoys are shown in Figure 2.

3.2. Risk Field of Ship Collision

As a field used to measure whether the ship’s navigation route is safe, the field of
collision risk [39] is an important condition for judging whether the ship’s navigation route
collides with a target. The ship safety field is divided into the left eccentric ellipse field, left
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eccentric circular field, and circular field. Because the target collision avoidance object in
this paper needs the ship to pass the target object from a certain distance, this paper will
use the circular field.
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Figure 2. Field of buoy offset.

According to the field of ship safety, set p ∈ [0s, 3600s], according to Formula (6),
to determine whether there is a collision risk on the navigation path at this time. When
satisfied, there is a collision risk; otherwise, there is no collision risk.

D
∣∣t=p ≤

m
2
+ 2M (6)

amin = arcsin

(
m
2 + 2M
D
∣∣t=p

)
(7)

where D
∣∣t=p represents the distance between the ship and the buoy area center at p; amin

represents a ship collision avoidance orientation; m is the diameter of the buoy offset field.
It can be seen from Figure 3 that when the ship navigation parameter t = 1800, the

distance between the ship domain center and the buoy domain center is greater than or
equal to m/2 + 2M, so there is no collision risk. When the navigation parameter t = 3600,
the distance between the ship domain center and the buoy domain center is less than
m/2 + 2M, so there is a collision risk.

It can be seen from the Figure 4; the a is the collision avoidance steering angle; O is
the buoy field center; r is the radius of the buoy field. The path planning process is shown
in Figure 5.
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4. Buoy Offset Position Prediction

In this section, 96 h of continuous data from 11 to 15 August 2018 of the No. 1 buoy of
Meizhou Bay are taken as the initial data. The data of the longitude and latitude position of
the buoy offset are decomposed into the historical trajectory data of the offset distance and
the offset azimuth angle, and the time-series data are tested and analyzed to establish a
mathematical model to predict the longitude and latitude position of the buoy offset for
24 h on 16 August 2018. The sink stone position is (119◦2′45.420′ ′ E, 24◦54′54.120′ ′ N).

4.1. Data Verification and Processing

The stability of data is an important prerequisite for the use of the multiplication
seasonal model. It is necessary to carry out difference processing on the time series and to
carry out unit root test on the processed time series. If the test requirements are met, the
data are stable, and if the test requirements are not met, further difference processing is
needed. The offset azimuth and offset distance trend are shown in Figures 6 and 7, and the
first-order difference is shown in Figures 8 and 9.
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It can be seen from Figures 6 and 7 that the offset azimuth trend and offset distance
trend have very obvious instability, so it is necessary to carry out differential processing
on the time series. The results of differential processing are shown in Figures 8 and 9. To
accurately test whether the processing results meet the requirements of the multiplication
seasonal model for data stability, it is necessary to conduct a unit root test on time series.
The Augmented Dickey–Fuller test statistic (ADF) [40] is one of the most important methods
for testing whether the time series are stationary and contain white noise sequences. The
test results are shown in Table 1.

Table 1. ADF test results of offset azimuth.

Augmented Dickey–Fuller Test Statistic t-Statistic Prob
−4.16208806 0.000763

Test Critical Values:
1% Level −3.51273806 -
5% Level −2.89748987 -
10% Level −2.58594873 -

According to Tables 1 and 2, the ADF test statistics of the offset azimuth time series and
the offset distance time series are lower than the corresponding critical values of 1%, 5% and
10%, and the probability is p < 0.05. Therefore, the time series meet the test requirements
and are stable.

Table 2. ADF test results of offset distance.

Augmented Dickey–Fuller Test Statistic t-Statistic Prob
−8.3298612 3.39 × 10−13

Test Critical Values:
1% Level −3.5117123 -
5% Level −2.8970475 -

10% Level −2.5857126 -

4.2. Parameter Selection

The parameter d = 1 can be determined when the trend of the time series of offset
azimuth and offset distance disappear after the first-order difference. The parameter D = 1
can be determined when the time series of offset azimuth and offset distance disappear
seasonally. However, to determine the optimal combination model, the final values of
parameters p and q must be determined by combining autocorrelation function (ACF)
and partial autocorrelation function (PACF) [41]. The ranges of parameters p and q in the
multiplicative seasonal model are [0,2]. The ACF and PACF analysis of offset azimuth and
offset distance are shown in Figures 10–13.
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It can be seen from the ACF and PACF graphs of offset azimuth and offset distance
that there is no obvious tailing or truncation. Therefore, it is necessary to separate the
time-series data of offset azimuth and offset distance. The time-series data are divided into
seasonal trend, random fluctuation trend and growth trend. The analysis results are shown
in Figures 14 and 15.
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optimal parameter combinations, it is necessary to optimize the combination of various
parameters and select the optimal parameters according to the AIC minimum information
criterion method [42]. The smaller the value obtained by AIC, the better the prediction
model. The AIC calculation results of the offset azimuth and offset distance are shown in
Tables 3 and 4.

Table 3. AIC calculation results of offset azimuth.

Model Parameter AIC Results

SARIMA (0,1,0) × (0,1,0,24) AIC = 570.04
SARIMA (0,1,0) × (0,1,1,24) AIC = 360.00
SARIMA (0,1,0) × (1,1,0,24) AIC = 371.57
SARIMA (0,1,0) × (1,1,1,24) AIC = 365.49
SARIMA (0,1,1) × (0,1,0,24) AIC = 505.78
SARIMA (0,1,1) × (0,1,1,24) AIC = 320.37
SARIMA (0,1,1) × (1,1,0,24) AIC = 338.86
SARIMA (0,1,1) × (1,1,1,24) AIC = 324.48
SARIMA (1,1,0) × (0,1,0,24) AIC = 548.06
SARIMA (1,1,0) × (0,1,1,24) AIC = 346.20
SARIMA (1,1,0) × (1,1,0,24) AIC = 348.26
SARIMA (1,1,0) × (1,1,1,24) AIC = 350.24
SARIMA (1,1,1) × (0,1,0,24) AIC = 503.45
SARIMA (1,1,1) × (0,1,1,24) AIC = 321.42
SARIMA (1,1,1) × (1,1,0,24) AIC = 331.35
SARIMA (1,1,1) × (1,1,1,24) AIC = 325.29

Table 4. AIC calculation results of offset distance.

Model Parameter AIC Results

SARIMA (0,1,0) × (0,1,0,24) AIC = 532.17
SARIMA (0,1,0) × (0,1,1,24) AIC = 329.45
SARIMA (0,1,0) × (1,1,0,24) AIC = 344.67
SARIMA (0,1,0) × (1,1,1,24) AIC = 338.06
SARIMA (0,1,1) × (0,1,0,24) AIC = 467.86
SARIMA (0,1,1) × (0,1,1,24) AIC = 299.24
SARIMA (0,1,1) × (1,1,0,24) AIC = 318.07
SARIMA (0,1,1) × (1,1,1,24) AIC = 305.10
SARIMA (1,1,0) × (0,1,0,24) AIC = 510.44
SARIMA (1,1,0) × (0,1,1,24) AIC = 324.85
SARIMA (1,1,0) × (1,1,0,24) AIC = 330.63
SARIMA (1,1,0) × (1,1,1,24) AIC = 331.37
SARIMA (1,1,1) × (0,1,0,24) AIC = 465.20
SARIMA (1,1,1) × (0,1,1,24) AIC = 301.17
SARIMA (1,1,1) × (1,1,0,24) AIC = 312.63
SARIMA (1,1,1) × (1,1,1,24) AIC = 307.10

Tables 3 and 4 shows that the minimum AIC value of offset azimuth is 320.38 and
the minimum AIC value of offset distance is 299.25. Therefore, the parameters of offset
azimuth can be determined as p = 0, q = 1, p = 0, Q = 1. The parameters of offset distance
p = 0, q = 1, P = 0, Q = 1, so the offset azimuth and offset distance should choose SARIMA
(0,1,1) × (0,1,1) 24 as the optimal parameter combination of the SARIMA model.

4.3. Offset Position Prediction

According to the multiplication seasonal model of the optimal parameter combinations,
the offset azimuth and offset distance from 1:00 to 24:00 on 15 August 2018 are predicted,
and the predicted values are compared with the actual values. The predicted results are
compared in Figures 16 and 17.



J. Mar. Sci. Eng. 2022, 10, 674 14 of 20

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 22 
 

 

4.3. Offset Position Prediction 
According to the multiplication seasonal model of the optimal parameter combina-

tions, the offset azimuth and offset distance from 1:00 to 24:00 on 15 August 2018 are 
predicted, and the predicted values are compared with the actual values. The predicted 
results are compared in Figures 16 and 17. 

300

310

320

330

340

350

360

8/11 1:08 8/11 18:08 8/12 11:08 8/13 4:08 8/13 21:08 8/14 14:08 8/15 7:07 8/16 0:07

Actual Values Predicted Values

Time/h  
Figure 16. Comparison of offset azimuth prediction. 

Time/h

40

45

50

55

60

65

70

75

80

8/11 1:08 8/11 18:08 8/12 11:08 8/13 4:08 8/13 21:08 8/14 14:08 8/15 7:07 8/16 0:07

Actual Values Predicted Values

 
Figure 17. Comparison of offset distance prediction. 

After calculating the predicted values of the offset azimuth and predicted values of 
the offset distance, the Mercator projection coordinates of the known sink stone position 
are (13252140.099131335,2865307.8948890963), and the Mercator projection coordinates 
of the predicted point are calculated according to Formula (8). 

sin( ) cos( ) 0 90 ;

sin(180 ) cos(180 ) 90 180

sin(270 ) cos(270 ) 180 270

sin(360 ) cos(360 ) 270

t t t t t

t t t t t

t t t t t

t t t t

x x y y

x x y y

x x y y

x x y y

α β α β

α β α β

α β α β

α β α β

λ η λ η η

λ η λ η η

λ η λ η η

λ η λ η η

ο

ο ο ο ο

ο ο ο ο

ο ο ο

= + × = + × < ≤

= + × − = − × − < ≤

= − × − = + × − < ≤

= − × − = − × − <

、

、

、

、 360t
ο






 ≤

 
(8)

Figure 16. Comparison of offset azimuth prediction.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 22 
 

 

4.3. Offset Position Prediction 
According to the multiplication seasonal model of the optimal parameter combina-

tions, the offset azimuth and offset distance from 1:00 to 24:00 on 15 August 2018 are 
predicted, and the predicted values are compared with the actual values. The predicted 
results are compared in Figures 16 and 17. 

300

310

320

330

340

350

360

8/11 1:08 8/11 18:08 8/12 11:08 8/13 4:08 8/13 21:08 8/14 14:08 8/15 7:07 8/16 0:07

Actual Values Predicted Values

Time/h  
Figure 16. Comparison of offset azimuth prediction. 

Time/h

40

45

50

55

60

65

70

75

80

8/11 1:08 8/11 18:08 8/12 11:08 8/13 4:08 8/13 21:08 8/14 14:08 8/15 7:07 8/16 0:07

Actual Values Predicted Values

 
Figure 17. Comparison of offset distance prediction. 

After calculating the predicted values of the offset azimuth and predicted values of 
the offset distance, the Mercator projection coordinates of the known sink stone position 
are (13252140.099131335,2865307.8948890963), and the Mercator projection coordinates 
of the predicted point are calculated according to Formula (8). 

sin( ) cos( ) 0 90 ;

sin(180 ) cos(180 ) 90 180

sin(270 ) cos(270 ) 180 270

sin(360 ) cos(360 ) 270

t t t t t

t t t t t

t t t t t

t t t t

x x y y

x x y y

x x y y

x x y y

α β α β

α β α β

α β α β

α β α β

λ η λ η η

λ η λ η η

λ η λ η η

λ η λ η η

ο

ο ο ο ο

ο ο ο ο

ο ο ο

= + × = + × < ≤

= + × − = − × − < ≤

= − × − = + × − < ≤

= − × − = − × − <

、

、

、

、 360t
ο






 ≤

 
(8)

Figure 17. Comparison of offset distance prediction.

After calculating the predicted values of the offset azimuth and predicted values of
the offset distance, the Mercator projection coordinates of the known sink stone position
are (13252140.099131335,2865307.8948890963), and the Mercator projection coordinates of
the predicted point are calculated according to Formula (8).

xα = xβ + λt × sin(ηt), yα = yβ + λt × cos(ηt) 0 < ηt ≤ 90
◦
;

xα = xβ + λt × sin(180
◦ − ηt), yα = yβ − λt × cos(180

◦ − ηt) 90
◦
< ηt ≤ 180

◦

xα = xβ − λt × sin(270
◦ − ηt), yα = yβ + λt × cos(270

◦ − ηt), 180
◦
< ηt ≤ 270

◦

xα = xβ − λt × sin(360
◦ − ηt), yα = yβ − λt × cos(360

◦ − ηt), 270
◦
< ηt ≤ 360

◦

(8)

where (xα, yα) is the Mercator projection coordinate of the prediction position; (xβ, yβ) is
the Mercator projection coordinates of the buoy position; (xε, yε) are the longitude and
latitude coordinates of the prediction position; λt represents predicted offset distance; αt
represents the predicted azimuth.
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After calculating the Mercator projection coordinates of the prediction position, the latitude
and longitude coordinates of the prediction position are calculated according to Formula (9)
and the actual values are compared with the predicted values, see Figures 18 and 19.

xε =
xα

20037508.34 × 180
◦

yε1 = yα
20037508.34 × 180

◦

yε =
180

◦

π × [2× arctan(eyε1×
π

180
◦ )− π

2 ]

(9)
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4.4. Error Analysis

According to the mean absolute percentage error (MAPE) and root-mean-squared
error (RMSE) [43], the error tests of predicted offset azimuth and predicted offset distance
are carried out. The formulas are shown in Formulas (10) and (11).

MAPE =
1
n

n

∑
i=1

∣∣∣∣ x− x∗

x

∣∣∣∣× 100% (10)
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RMSE =

√√√√√ n
∑

i=1
(x− x∗)2

n
(11)

The predicted offset azimuth MAPE = 1.79%, RMSE = 7.912893, predicted offset
distance MAPE = 7.37%, and RMSE = 5.441061 of the SARIMA models are calculated. To
reflect the advantages of the model, the prediction results of the SARIMA model, BP neural
network prediction model, and grey GM (1,1) prediction model are compared, and this
comparison is shown in Figure 20.
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According to Figure 20, compared to BP neural network prediction model and grey 
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According to Figure 20, compared to BP neural network prediction model and grey
GM (1,1) prediction model, the prediction error of the multiplication seasonal model is
lower, and it is more effective for predicting the offset position of the buoy.

5. Path-Planning Simulation

This paper takes Minhuiyu 11,512 and Minhuiyu 01,366 boats as the simulation ships
and Meizhou Bay No.1 buoy as the avoidance object to simulate the path planning of the
ship. The parameters of the ship and the buoy are shown in Tables 5 and 6.

Table 5. Simulation of ship parameters.

Name MMSI Coordinate Course Diameter of the Ship

Minhuiyu 11512 880011590 (119◦2′40.848′ ′ E,
24◦54′52.704′ ′ N) 65 23 m

Minhuiyu 01366 412452752 (119◦2′46.032′ ′ E,
24◦54′53.568′ ′ N) 270◦ 23 m
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Table 6. Simulation of buoy parameters.

Name Sink Stone Position Diameter (L) Watermarking Free-Board Depth

Meizhou Bay
No.1

(119◦2′45.420′ ′ E,
24◦54′54.120′ ′ N) 2.4 m >3.0 m 0.9 m

The multiplication seasonal model is used as the prediction model to predict the future
offset position, and then the predicted offset trajectory is made according to the predicted
offset value of the next 24 h. According to Formula (7), the parameter m of the buoy
offset field is calculated, and the buoy offset field is made. Figure 21 is used to calculate
the buoy field parameter m = 46.8, and the center coordinate of the buoy offset field is
(119◦2′41.760′ ′ E, 24◦54′56.520′ ′ N).
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Figure 21. Field of buoy offset. Figure 21. Field of Meizhou bay No.1 buoy offset.

Taking Minyuhui 11512, Minyuhui 01,366 and Meizhou Bay 1 # buoy as simulation
objects, the circular ship domain # 1, circular ship domain # 2 and buoy offset domain # 1
are constructed, respectively. The simulation results are shown in Figure 22.

When the navigation parameter t = 100 s, Minyuhui 11,512 is 0.065 nautical miles
from the center of the buoy field, with a heading of 65◦, there is a risk of collision, and the
collision avoidance angle is 22◦. Minyuhui 01,366 is 0.058 nautical miles from the buoy
field center, heading 270◦, with no risk of collision, and no need to change direction.

When the navigation parameter t = 2200 s, Minyuhui 11,512 is 0.037 nautical miles
from the center of the buoy, with a heading of 43◦, and the absolute difference between
the actual route and the planned route is greater than 1◦. Therefore, it is necessary to
perform re-navigation, and the re-navigation angle is 47◦. Minyuhui 01,366 is more than
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0.037 nautical miles away from the buoy field center, with a heading of 270◦, no risk of
collision, and no need to change direction.

When the navigation parameter t = 3600 s, Minyuhui 11,512 is 0.057 nautical miles
from the center of the buoy area, with a heading of 65◦, the heading and planned route
angle are the same, and the re-navigation is successful. Minyuhui 01,366 is 0.041 nautical
miles from the buoy field center, with a heading of 270◦, no risk of collision, and no need to
change direction.
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6. Conclusions

In view of the traditional path-planning method, it is difficult to solve the problem of
ship collision caused by marine buoy offset, and this paper proposes a ship path-planning
method based on historical trajectory data and the SARIMA model. By predicting the offset
trajectory of the buoy, this party delimits the circular offset field and plans the navigation
path of an unmanned ship in combination with the dangerous field of the ship. The
SARIMA prediction model is compared with the BP neural network prediction model and
GM (1,1) model. Compared to the BP neural network prediction model, the prediction
offset azimuth MAPE of the SARIMA model is reduced by 0.54%, the RMSE is reduced
by 0.51, the offset distance MAPE is decreased by 4.18%, and RMSE is decreased by 2.13.
Compared to the GM (1,1) prediction model, the predicted offset azimuth MAPE of the
SARIMA model is reduced by 1.50%, the RMSE is reduced by 4.77, the offset distance
MAPE is reduced by 7.41%, and the RMSE is reduced by 4.49. These research results show
that this method can accurately predict the offset position of a buoy, and can effectively
plan the navigation path of unmanned ships. However, this paper is too simple regarding
the area division of the offset of the buoy, and only uses the circular area to divide it.
Furthermore, some natural factors are not taken into account in the prediction model. In
the follow-up, the field division of the offset position of the buoy will be further studied to
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minimize the offset field of the buoy, and further, we will consider the influence of natural
factors such as flow and typhoons on the offset prediction of a light buoy.

Author Contributions: Conceptualization, S.Z. and Z.W.; methodology, L.R.; software, L.R.; valida-
tion, S.Z. and Z.W.; formal analysis, Z.W.; investigation, S.Z.; resources, Z.W.; data curation, S.Z.;
writing—original draft preparation, L.R.; writing—review and editing, Z.W.; visualization, S.Z.;
supervision, Z.W.; project administration, L.R.; funding acquisition, L.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Fujian Province (Grant
no. 2020J01658, 2019J01325), Open Project Fund of National Local Joint Engineering Research Center
for Ship Assisted Navigation Technology (Grant no. HHXY2020002), Doctoral Start-up Fund of Jimei
University (Grant no. ZQ2019012).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yoo, Y.; Lee, J.S. Collision Risk Assessment Support System for MASS RO and VTSO Support in Multi-Ship Environment of

Vessel Traffic Service Area. J. Mar. Sci. Eng. 2021, 9, 1143. [CrossRef]
2. Rong, H.; Teixeira, A.P.; Soares, C.G. Spatial correlation analysis of near ship collision hotspots with local maritime traffic

characteristics. Reliab. Eng. Syst. Saf. 2021, 209, 107463. [CrossRef]
3. Luong, T.N.; Hwang, S.; Im, N. Harbour Traffic Hazard Map for real-time assessing waterway risk using Marine Traffic Hazard

Index. Ocean Eng. 2021, 239, 109884. [CrossRef]
4. Kim, J.K. Semi-Continuous Spatial Statistical Analysis Using AIS Data for Vessel Traffic Flow Characteristics in Fairway. J. Mar.

Sci. Eng. 2021, 9, 4–378. [CrossRef]
5. Piao, Z.; Guo, C.; Sun, S. Research into the Automatic Berthing of under actuated Unmanned Ships under Wind Loads Based on

Experiment and Numerical Analysis. J. Mar. Sci. Eng. 2019, 7, 300. [CrossRef]
6. Lee, H.W.; Roh, M.I.; Kim, K.S. Ship route planning in Arctic Ocean based on POLARIS. Ocean Eng. 2021, 234, 109297. [CrossRef]
7. Lazarowska, A. Ship’s trajectory planning for collision avoidance at sea based on ant colony optimization. J. Navig. 2015,

68, 291–307. [CrossRef]
8. Ma, Y.; Feng, W.; Mao, Z.Y. Path planning of UUV based on HQPSO algorithm with considering the navigation error. Ocean Eng.

2021, 244, 110048. [CrossRef]
9. MahmoudZadeh, S.; Yazdani, A.M.; Sammut, K.; Powers, D. Online path planning for AUV rendezvous in dynamic cluttered

undersea environment using evolutionary algorithms. Appl. Soft Comput. 2018, 70, 929–945. [CrossRef]
10. Song, J.; Hao, C.; Su, J.C. Path planning for unmanned surface vehicle based on predictive artificial potential field. Int. J. Adv.

Robot. Syst. 2020, 17, 2. [CrossRef]
11. Lyh, H.G.; Yin, Y. COLREGS-Constrained Real-time Path Planning for Autonomous Ships Using Modified Artificial Potential

Fields. J. Navig. 2019, 72, 588–608.
12. Luis, S.Y.; Reina, D.G.; Marin, S.L.T. A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous

Surface Vehicles: The Ypacarai Lake Patrolling Case. IEEE Access 2021, 9, 17084–17099. [CrossRef]
13. Da Silva, A.G.; Dos Santos, D.H.; De Negreiros, A.P.F.; Silva, J.M.V.B.D.S.; Gonçalves, L.M.G. High-Level Path Planning for an

Autonomous Sailboat Robot Using Q-Learning. Sensors 2020, 20, 6.
14. Luis, S.Y.; Reina, D.G.; Marin, S.L.T. A Deep Reinforcement Learning Approach for the Patrolling Problem of Water Resources

Through Autonomous Surface Vehicles: The Ypacarai Lake Case. IEEE Access 2020, 8, 204076–204093. [CrossRef]
15. Guo, S.Y.; Zhang, X.G.; Zheng, Y.S.; Du, Y. An Autonomous Path Planning Model for Unmanned Ships Based on Deep

Reinforcement Learning. Sensors 2020, 20, 426. [CrossRef] [PubMed]
16. Lazarowska, A. Comparison of Discrete Artificial Potential Field Algorithm and Wave-Front Algorithm for Autonomous Ship

Trajectory Planning. IEEE Access 2021, 8, 221013–221026. [CrossRef]
17. Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive low-level control of autonomous underwater vehicles

using deep reinforcement learning. Robot. Auton. Syst. 2018, 107, 71–86. [CrossRef]
18. Meyer, E.; Heiberg, A.; Rasheed, A.; San, O. COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle Using Deep

Reinforcement Learning. IEEE Access 2020, 8, 165344–165364. [CrossRef]
19. Zaccone, R. COLREG-Compliant Optimal Path Planning for Real-Time Guidance and Control of Autonomous Ships. J. Mar. Sci.

Eng. 2021, 9, 405. [CrossRef]

http://doi.org/10.3390/jmse9101143
http://doi.org/10.1016/j.ress.2021.107463
http://doi.org/10.1016/j.oceaneng.2021.109884
http://doi.org/10.3390/jmse9040378
http://doi.org/10.3390/jmse7090300
http://doi.org/10.1016/j.oceaneng.2021.109297
http://doi.org/10.1017/S0373463314000708
http://doi.org/10.1016/j.oceaneng.2021.110048
http://doi.org/10.1016/j.asoc.2017.10.025
http://doi.org/10.1177/1729881420918461
http://doi.org/10.1109/ACCESS.2021.3053348
http://doi.org/10.1109/ACCESS.2020.3036938
http://doi.org/10.3390/s20020426
http://www.ncbi.nlm.nih.gov/pubmed/31940855
http://doi.org/10.1109/ACCESS.2020.3043539
http://doi.org/10.1016/j.robot.2018.05.016
http://doi.org/10.1109/ACCESS.2020.3022600
http://doi.org/10.3390/jmse9040405


J. Mar. Sci. Eng. 2022, 10, 674 20 of 20

20. Shah, B.C.; Gupta, S.K. Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment. IEEE J.
Ocean. Eng. 2020, 45, 813–830. [CrossRef]

21. Lyridis, D.V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-
modality constraints. Ocean Eng. 2021, 241, 109890. [CrossRef]

22. Ahmed, B.; Mangalathu, S.; Jeon, J.S. Seismic damage state predictions of reinforced concrete structures using stacked long
short-term memory neural networks. J. Build. Eng. 2022, 46, 103737. [CrossRef]

23. Matic, P.; Bego, O.; Males, M. Complex Hydrological System Inflow Prediction using Artificial Neural Network. Teh. Vjesn. Tech.
Gaz. 2022, 29, 172–177.

24. Yang, Y.; Fan, C.J.; Chen, L. IPMOD: An efficient outlier detection model for high-dimensional medical data streams. Expert Syst.
Appl. 2022, 191, 116212. [CrossRef]

25. Bhanja, S.; Das, A. A Black Swan event-based hybrid model for Indian stock markets’ trends prediction. Innov. Syst. Softw. Eng.
2022, 1–15. [CrossRef]

26. Yu, W.W.; Xing, J.M. Sports Event Model Evaluation and Prediction Method Using Principal Component Analysis. Wirel. Commun.
Mob. Comput. 2022, 2022, 9351522. [CrossRef]

27. Li, J.X.; Zhou, A.J.; Liao, Y.F. Forest Ecological Diversity Change Prediction Discrete Dynamic Model. Discret. Dyn. Nat. Soc. 2022,
2022, 4869363. [CrossRef]

28. Liu, L.; Chen, W.Z.; Li, Y.B. Comprehensive Analysis of Pyroptosis-Related Long Noncoding RNA Immune Infiltration and
Prediction of Prognosis in Patients with Colon Cancer. J. Oncol. 2022, 2022, 2035808. [CrossRef]

29. Zeng, Z.; Yan, H.; Fu, A.M.N. Time-series prediction based on pattern classification. Artif. Intell. Eng. 2001, 15, 61–69. [CrossRef]
30. Yuan, K.X.; Liu, J.; Yang, S.C. Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps. Knowl.-Based

Syst. 2020, 206, 106359. [CrossRef]
31. Sebastian, R.; Thomas, N. A fractal interpolation approach to improve neural network predictions for difficult time series data.

Expert Syst. Appl. 2021, 169, 114474.
32. Her, M.T.; Chung, C.C.; Lin, C.T. Ship Price Predictions of Panamax Second-Hand Bulk Carriers Using Grey Models. J. Mar. Sci.

Technol. Taiwan 2019, 27, 229–234.
33. Sahoo, A.; Samantatay, S.; Ghose, D.K. Multilayer perceptron and support vector machine trained with grey wolf optimiser for

predicting floods in Barak river, India. J. Earth Syst. Sci. 2022, 131, 85. [CrossRef]
34. Paquet, E.; Soleymani, F. QuantumLeap: Hybrid quantum neural network for financial predictions. Expert Syst. Appl. 2022,

195, 116583. [CrossRef]
35. Oztunc, K.; Oznur Kaymak, Y. Prediction of crude oil prices in COVID-19 outbreak using real data. Chaos Solitons Fractals 2022,

158, 111990. [CrossRef]
36. Thiruchelvam, L.; Dass, S.C.; Asirvadam, S.; Daud, H.; Gill, B.S. Determine neighboring region spatial effect on dengue cases

using ensemble ARIMA models. Sci. Rep. 2021, 11, 5873. [CrossRef]
37. Wu, Z.Z.; Ren, L.Z.; Zhou, S.B.; Zhang, Y.; Xu, W.; Zhang, H. The Offset Azimuth Prediction of Light Buoy Based on Markov

Chain Optimization Multiplicative Seasonal Model. Math. Probl. Eng. 2022, 2022, 1250206. [CrossRef]
38. Koyuncu, K.; Tavacioglu, L.; Gokmen, N.; Arican, U. Forecasting COVID-19 impact on RWI/ISL container throughput index by

using SARIMA models. Marit. Policy Manag. 2021, 48, 1096–1108. [CrossRef]
39. Zhou, D. Research on a Novel Dynamic and Fuzzy Ship Domain; Dalian Maritime University: Dalian, China, 2017.
40. Dorta, M.; Sanchez, G. Bootstrap unit-root test for random walk with drift: The bsrwalkdrift command. Stata J. 2021, 21, 39–50.

[CrossRef]
41. Adib, A.; Sheydaei, F.; Shoushtari, M.M.; Ashrafi, S.M. Using of gene expression programming method for prediction of daily

components of tidal cycle in tidal rivers. Arab. J. Geosci. 2021, 14, 5. [CrossRef]
42. Liu, Y.Q.; Qie, Z.H.; Han, W.M. Fitting model optimization test curve based on the AIC criterion. J. Hebei Agric. Univ. 2017,

40, 120–124.
43. Rahmanian, V.; Bokaie, S.; Haghdoost, A. Predicting cutaneous leishmaniasis using SARIMA and Markov switching models in

Isfahan, Iran: A time-series study. Asian Pac. J. Trop. Med. 2021, 14, 83–93.

http://doi.org/10.1109/JOE.2019.2909508
http://doi.org/10.1016/j.oceaneng.2021.109890
http://doi.org/10.1016/j.jobe.2021.103737
http://doi.org/10.1016/j.eswa.2021.116212
http://doi.org/10.1007/s11334-021-00428-0
http://doi.org/10.1155/2022/9351522
http://doi.org/10.1155/2022/4869363
http://doi.org/10.1155/2022/2035808
http://doi.org/10.1016/S0954-1810(00)00026-1
http://doi.org/10.1016/j.knosys.2020.106359
http://doi.org/10.1007/s12040-022-01815-2
http://doi.org/10.1016/j.eswa.2022.116583
http://doi.org/10.1016/j.chaos.2022.111990
http://doi.org/10.1038/s41598-021-84176-y
http://doi.org/10.1155/2022/1250206
http://doi.org/10.1080/03088839.2021.1876937
http://doi.org/10.1177/1536867X211000003
http://doi.org/10.1007/s12517-021-06752-w

	Introduction 
	Multiplication Seasonal SARIMA Model 
	ARIMA Model 
	Stochastic Seasonal Model 
	Multiplication Seasonal Model 

	Ship Path-Planning Method for Random Motion of Buoy 
	Field of Buoy Offset 
	Risk Field of Ship Collision 

	Buoy Offset Position Prediction 
	Data Verification and Processing 
	Parameter Selection 
	Offset Position Prediction 
	Error Analysis 

	Path-Planning Simulation 
	Conclusions 
	References

