Evaluation of Dynamic Tensions of Single Point Mooring System under Random Waves with Artificial Neural Network
Abstract
:1. Introduction
2. Methodology for the Tensions Evaluation of Single Point Mooring System
2.1. Theory of LSTM Neural Network
2.2. Normalization of the Neural Network
2.3. Indicators of Calculation Accuracy
2.4. Training Data of LSTM Neural Network
3. FPSO and Single-Point Mooring System with the Environment
3.1. FPSO and Mooring System
3.2. Working Environment Conditions
4. Preliminary Process for the Evaluations
4.1. Validation of the Mooring Model
4.2. LSTM Model Design
5. Cases Study of Tension Prediction with LSTM
5.1. The Same Condition Verification
5.2. The Different Conditions Verification
5.2.1. Validation Sets Prediction
5.2.2. Test Sets Prediction
6. Conclusions
- (1)
- The LSTM model built here performs well in predicting the mooring tension.
- (2)
- In the prediction of mooring line tension under multiple combinations of wind, wave, and current, the predicted value does not deviate much from the true value, and the prediction result is relatively satisfactory, so the LSTM neural network model can learn the low-frequency trend regardless of whether the wind, wave, and current are in the same direction.
- (3)
- Here, the research on the prediction of the mooring line tension of the inner turret FPSO can realize the comparative analysis of the real-time measurement data and numerical calculation data at sea to a certain extent and provide a new calculation method for the calculation of the dynamic mooring line tension.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Minnebo, J.; Aalberts, P.; Duggal, A. Mooring System Monitoring using DGPS. In Proceedings of the 33rd ASME International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar]
- Correa, F.N.; Jacovazzo, B.M.; Alves de Lima, M.H., Jr.; Jacob, B.P. A reduced integration method for the coupled analysis of floating production systems. Ocean Eng. 2015, 104, 422–436. [Google Scholar] [CrossRef]
- Queau, L.M.; Kimiaei, M.; Randolph, M.F. Artificial neural network development for stress analysis of steel catenary risers: Sensitivity study and approximation of static stress range. Appl. Ocean Res. 2014, 48, 148–161. [Google Scholar] [CrossRef]
- Kim, Y. Finite memory quadratic Volterra model for the response prediction of a slender marine structure under a Morison load. J. Fluids Struct. 2015, 56, 75–88. [Google Scholar] [CrossRef]
- Mak, B.; Duz, B. Ship as a Wave Buoy: Using Simulated Data to Train Neural Networks for Real Time Estimation of Relative Wave Direction. In Proceedings of the 38th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019), Glasgow, UK, 9–14 June 2019. [Google Scholar]
- Chaves, V.; Sagrilo, L.V.S.; da Silva, V.R.M. Optimization of Flexible Pipes Dynamic Analysis using Artificial Neural Networks. In Proceedings of the 35th ASME International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 18–24 June 2016. [Google Scholar]
- Guo, X.; Zhang, X.; Tian, X.; Li, X.; Lu, W. Predicting heave and surge motions of a semi-submersible with neural networks. Appl. Ocean Res. 2021, 112, 102708. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X. Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning. Energies 2020, 13, 2264. [Google Scholar] [CrossRef]
- Li, C.B.; Choung, J. Fatigue damage analysis for a floating offshore wind turbine mooring line using the artificial neural network approach. Ships Offshore Struct. 2016, 12, S288–S295. [Google Scholar] [CrossRef]
- Janas, K.; Milne, I.A.; Whelan, J.R. Application of a convolutional neural network for mooring failure identification. Ocean Eng. 2021, 232, 109119. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Lee, J.-B.; Roh, M.-I.; Han, K.-M.; Lee, G.-H. Prediction of Ocean Weather Based on Denoising AutoEncoder and Convolutional LSTM. J. Mar. Sci. Eng. 2020, 8, 805. [Google Scholar] [CrossRef]
- Karevan, Z.; Suykens, J.A.K. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 2020, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, T.; Han, G.; Gou, Y. TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction. Sensors 2018, 18, 3797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.M.Q.; Pereira, A.C.M.; de Oliveira, R.A. Stock Market’s Price Movement Prediction with LSTM Neural Networks. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1419–1426. [Google Scholar]
- Duan, S.; Ma, Q.; Huang, L.; Ma, X. A LSTM deep learning model for deterministic ship motions estimation using wave-excitation inputs. In Proceedings of the 29th International Ocean and Polar Engineering Conference (ISOPE 2019), Honolulu, HI, USA, 16–21 June 2019; International Society of Offshore and Polar Engineers: Mountain View, CA, USA, 2019; pp. 959–965. [Google Scholar]
- Liu, Y.; Duan, W.; Huang, L.; Duan, S.; Ma, X. The input vector space optimization for LSTM deep learning model in real-time prediction of ship motions. Ocean Eng. 2020, 213, 107681. [Google Scholar] [CrossRef]
- Gumley, J.M.; Marcollo, H.; Wales, S.; Potts, A.E.; Carra, C.J. Application of Machine Learning Techniques as a Means of Mooring Integrity Monitoring. In Proceedings of the 38th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019), Glasgow, UK, 9–14 June 2019. [Google Scholar]
- Chung, M.; Kim, S.; Lee, K.; Shin, D. Detection of damaged mooring line based on deep neural networks. Ocean Eng. 2020, 209, 107522. [Google Scholar] [CrossRef]
- Sidarta, D.E.; Kyoung, J.; O’Sullivan, J.; Lambrakos, K.F. Prediction of Offshore Platform Mooring Line Tensions using Artificial Neural Network. In Proceedings of the 36th ASME International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar]
- Sidarta, D.E.; O’Sullivan, J.; Lim, H.J. Damage Detection of Offshore Platform Mooring Line Using Artificial Neural Network. In Proceedings of the 37th ASME International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018. [Google Scholar]
- Guarize, R.; Matos, N.A.F.; Sagrilo, L.V.S.; Lima, E.C.P. Neural networks in the dynamic response analysis of slender marine structures. Appl. Ocean Res. 2007, 29, 191–198. [Google Scholar] [CrossRef]
- Saad, A.M.; Schopp, F.; Barreira, R.A.; Santos, I.H.F.; Tannuri, E.A.; Gomi, E.S.; Reali Costa, A.H. Using Neural Network Approaches to Detect Mooring Line Failure. IEEE Access 2021, 9, 27678–27695. [Google Scholar] [CrossRef]
- Qiao, D.; Li, P.; Ma, G.; Qi, X.; Yan, J.; Ning, D.; Li, B. Realtime prediction of dynamic mooring lines responses with LSTM neural network model. Ocean Eng. 2021, 219, 108368. [Google Scholar] [CrossRef]
- Qiao, D.; Li, B.; Yan, J.; Qin, Y.; Liang, H.; Ning, D. Transient Responses Evaluation of FPSO with Different Failure Scenarios of Mooring Lines. J. Mar. Sci. Eng. 2021, 9, 103. [Google Scholar] [CrossRef]
- American Petroleum Institute. Design and Analysis of Stationkeeping Systems for Floating Structures; American Petroleum Institute: Washington, DC, USA, 2005; pp. 60–64. [Google Scholar]
- Hall, M.; Goupee, A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Eng. 2015, 104, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qiao, D.; Yan, J.; Tang, G.; Li, B.; Ning, D. A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure. Ocean Eng. 2022, 249, 110905. [Google Scholar] [CrossRef]
Name | Value | Unit | Name | Value | Unit |
---|---|---|---|---|---|
Overall length | 261.6 | m | Distance between center of gravity and 0 station (m) | 125 | m |
Molded length | 250 | m | Distance between gravity center and ship bottom (m) | 14 | m |
Beam molded | 46 | m | Roll radius of gyration (m) | 15.2 | m |
Molded depth | 24.6 | m | Pitching radius of gyration (m) | 62.5 | m |
Load draught | 16.5 | m | Yaw radius of bowing (m) | 62.5 | m |
Water discharge | 176,000 | t | Distance from turret to 0 station (m) | 232 | m |
Segments (from Top to Bottom) | Length of #1–6 (m) | Length of #7–9 (m) | Drag Coefficients | Added Mass Coefficients | ||
---|---|---|---|---|---|---|
Normal Direction | Tangential Direction | Normal Direction | Tangential Direction | |||
LCS | 50 | 51 | 2.4 | 1.15 | 1 | 0.5 |
CE | 2.62 | - | 1.2 | 0.025 | 0.5 | 0.5 |
LWS | 496 | - | 1.2 | 0.025 | 1 | 0.5 |
CE | 2.62 | - | 1.2 | 0.025 | 1 | 0.5 |
UCS1 | 140 | 300 | 2.4 | 1.15 | 1 | 0.5 |
UCS2 | 100 | 50 | 2.4 | 1.15 | 1 | 0.5 |
UCS3 | 10 | 10 | 2.4 | 1.15 | 1 | 0.5 |
CE | 2.62 | 2.62 | 1.2 | 0.025 | 1 | 0.5 |
UWS | 206 | 206 | 1.2 | 0.025 | 1 | 0.5 |
CE | 2.62 | 2.62 | 1.2 | 0.025 | 0.5 | 0.5 |
Components | Grade | Diameter (mm) | Dry Weight (kg/m) | Wet Weight (kN/m) | Breaking Strength (kN) | Axial Stiffness (kN/m) |
---|---|---|---|---|---|---|
LCS | R3 Studless | 173 | 599 | 5.11 | 20,120 | 1,497,950 |
LWS/UWS | Spiral Strand | 130 | 86.7 | 0.69 | 17,000 | 1,544,000 |
UCS1/3 | R3S Studless | 145 | 420.5 | 3.59 | 16,960 | 1,343,000 |
UCS2 | R3S Studless | 145 | 1140 | 9.74 | 16,960 | 1,343,000 |
CE | - | 270 | 1039.3 | 9.62 | - | 1,540,000 |
Working Condition Number | 10003 |
---|---|
Wave type | JONSWAP |
Wave direction (°) | 75 |
Wave height (m) | 2 |
Peak period (s) | 11.2 |
Peak factor | 3.3 |
Current velocity (m/s) | 0.75 |
Current direction (°) | 120 |
Wind spectrum | NPD |
Wind speed (m/s) | 18 |
Wind direction (m/s) | 90 |
Working Condition Number | Environmental Load Direction | |
---|---|---|
Significate Wave height of 1 m Peak period of 11.2 s Peak factor of 3.3 Wind speed of 3 m/s Current velocity of 0.15 m/s | AD1–AD13 | The wind, current, and wave are in the same direction; the wave direction is from 0° to 180°, with an interval of 15°. |
AD14–AD26 | The angle between the wind direction and the wave direction is 30°; the angle between the current direction and the wave direction is 45°; and the wave direction is from 0° to 180°, with an interval of 15°. | |
AD27–AD39 | The angle between the wind direction and the wave direction is 30°; the angle between the current direction and the wave direction is 60°; and the wave direction is from 0° to 180°, with an interval of 15°. |
Splicing Order | |||||||
---|---|---|---|---|---|---|---|
First row | AD5 | AD3 | AD17 | AD27 | AD6 | AD24 | AD4 |
Second row | AD33 | AD37 | AD34 | AD12 | AD25 | AD14 | AD31 |
Third row | AD39 | AD11 | AD18 | AD16 | AD29 | AD22 | AD9 |
Fourth row | AD23 | AD1 | AD38 | AD28 | AD21 | AD30 | AD20 |
Fifth row | AD2 | AD13 | AD19 | AD36 | AD26 | AD15 | AD8 |
Line | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 |
---|---|---|---|---|---|---|---|---|---|
AQWA (kN) | 256 | 256 | 256 | 256 | 256 | 256 | 258 | 258 | 258 |
SIMO (kN) | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 |
Error (%) | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 | 0.78 | 0.78 | 0.78 |
Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
LSTM_0 | 25 | 15 | 20 | 30 | 35 |
LSTM_1 | 100 | 100 | 100 | 100 | 100 |
LSTM_2 | 100 | 100 | 100 | 100 | 100 |
Dense | 9 | 9 | 9 | 9 | 9 |
Time step | 25 | 15 | 20 | 30 | 35 |
Dropout | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Learning rate | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
batch_size | 256 | 256 | 256 | 256 | 256 |
epochs | 20 | 20 | 20 | 20 | 20 |
Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
RMSN | 6.02 | 6.80 | 7.17 | 6.12 | 6.76 |
MAE | 4.26 | 5.26 | 5.25 | 4.43 | 5.03 |
Line | Max | Min | Mean | ||||||
---|---|---|---|---|---|---|---|---|---|
AQWA (kN) | LSTM (kN) | Error (%) | AQWA (kN) | LSTM (kN) | Error (%) | AQWA (kN) | LSTM (kN) | Error (%) | |
1 | 347.4 | 330.7 | 4.81 | 247.9 | 249.2 | 0.52 | 296.2 | 295.8 | 0.14 |
2 | 379.3 | 359.95 | 5.1 | 260.3 | 262.4 | 0.81 | 316.6 | 316.6 | 0 |
3 | 410.8 | 389.3 | 5.23 | 272.3 | 275.7 | 1.25 | 337.1 | 337.9 | 0.24 |
4 | 559.3 | 539.2 | 3.59 | 408.4 | 406.1 | 0.56 | 480.3 | 478.2 | 0.44 |
5 | 582 | 555.5 | 4.55 | 422.1 | 423.7 | 0.38 | 493.8 | 494.1 | 0.06 |
6 | 601.1 | 571.4 | 4.94 | 434.3 | 442.3 | 1.84 | 504.7 | 507.6 | 0.57 |
7 | 381.3 | 361.3 | 5.25 | 273 | 274.8 | 0.66 | 313.5 | 313.3 | 0.06 |
8 | 351.1 | 335.1 | 4.56 | 259.7 | 261.1 | 0.54 | 294.5 | 295 | 0.17 |
9 | 321.9 | 310.5 | 3.54 | 245.8 | 247.3 | 0.61 | 276.3 | 276.6 | 0.11 |
Line | Max | Min | Mean | ||||||
---|---|---|---|---|---|---|---|---|---|
AQWA (kN) | LSTM (kN) | Error (%) | AQWA (kN) | LSTM (kN) | Error (%) | AQWA (kN) | LSTM (kN) | Error (%) | |
1 | 277.1 | 270.2 | 2.49 | 211.4 | 217.6 | 2.93 | 249.4 | 249.7 | 0.12 |
2 | 275.9 | 270.9 | 1.81 | 211.4 | 217.6 | 2.93 | 249.7 | 250.0 | 0.12 |
3 | 275.5 | 272.1 | 1.23 | 211.7 | 217.6 | 2.79 | 250.1 | 250.5 | 0.16 |
4 | 303.1 | 288.7 | 4.75 | 228.6 | 231.9 | 1.44 | 256.2 | 256.6 | 0.16 |
5 | 307.7 | 291.4 | 5.29 | 229.6 | 232.0 | 1.05 | 256.3 | 256.8 | 0.20 |
6 | 312.5 | 295.8 | 5.34 | 229.5 | 231.5 | 0.87 | 256.4 | 256.8 | 0.16 |
7 | 292.9 | 286.8 | 2.08 | 222.7 | 228.3 | 2.51 | 251.9 | 251.5 | 0.16 |
8 | 291.1 | 285.1 | 2.06 | 222.4 | 226.7 | 1.93 | 251.6 | 251.0 | 0.24 |
9 | 288.9 | 283.0 | 2.04 | 222.1 | 225.0 | 1.31 | 251.1 | 250.5 | 0.24 |
Condition Number | AD7 | AD10 | AD32 | AD35 |
---|---|---|---|---|
Wind direction (deg) | 90 | 135 | 45 | 90 |
Wave direction (deg) | 90 | 135 | 75 | 120 |
Current direction (deg) | 90 | 135 | 15 | 60 |
Line | Max (kN) | Min (kN) | Mean (kN) | Standard Deviation (kN) | ||||
---|---|---|---|---|---|---|---|---|
AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | |
1 | 256.4 | 251.2 | 243.4 | 246.0 | 250.4 | 248.8 | 1.7 | 1.1 |
2 | 256.7 | 251.8 | 244.4 | 247.5 | 251.1 | 249.7 | 1.5 | 0.9 |
3 | 257.2 | 252.4 | 245.5 | 249.1 | 251.9 | 250.7 | 1.4 | 0.7 |
4 | 272.7 | 271.0 | 247.2 | 249.1 | 259.6 | 257.4 | 4.5 | 4.6 |
5 | 272.1 | 270.2 | 247.3 | 249.2 | 259.3 | 257.1 | 4.4 | 4.4 |
6 | 271.4 | 269.7 | 247.6 | 249.9 | 259.1 | 257.1 | 4.2 | 4.2 |
7 | 257.2 | 253.9 | 238.7 | 240.5 | 247.7 | 246.3 | 3.1 | 2.7 |
8 | 257.3 | 254.4 | 237.9 | 238.9 | 247.2 | 245.9 | 3.3 | 3.0 |
9 | 257.2 | 254.6 | 237.0 | 237.6 | 246.8 | 245.3 | 3.5 | 3.4 |
Line | Max (kN) | Min (kN) | Mean (kN) | Standard Deviation (kN) | ||||
---|---|---|---|---|---|---|---|---|
AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | LSTM | AQWA | |
1 | 257.6 | 253.4 | 235.2 | 236.3 | 246.0 | 244.1 | 3.9 | 3.7 |
2 | 257.7 | 254.1 | 235.8 | 236.7 | 246.4 | 244.7 | 3.7 | 3.7 |
3 | 257.9 | 255.5 | 236.6 | 237.1 | 246.9 | 245.6 | 3.6 | 3.7 |
4 | 271.2 | 267.6 | 247.0 | 249.5 | 258.0 | 256.8 | 4.0 | 3.2 |
5 | 272.0 | 268.2 | 246.8 | 249.4 | 258.2 | 257.1 | 4.2 | 3.4 |
6 | 272.9 | 268.9 | 246.7 | 249.2 | 258.5 | 257.3 | 4.4 | 3.7 |
7 | 259.0 | 256.9 | 244.6 | 245.7 | 252.5 | 250.6 | 1.6 | 1.8 |
8 | 258.3 | 255.9 | 244.1 | 245.6 | 251.8 | 250.0 | 1.6 | 1.7 |
9 | 257.5 | 254.5 | 243.6 | 245.4 | 251.1 | 249.3 | 1.6 | 1.6 |
AD35 | Max (kN) | Min (kN) | Mean (kN) | Standard Deviation (kN) | ||||
---|---|---|---|---|---|---|---|---|
AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | |
1 | 277.5 | 268.7 | 240.2 | 241.9 | 257.8 | 255.3 | 6.8 | 5.4 |
2 | 277.7 | 269.6 | 240.7 | 242.2 | 258.1 | 256.2 | 6.7 | 5.4 |
3 | 277.9 | 271.2 | 241.0 | 242.4 | 258.5 | 257.3 | 6.5 | 5.5 |
4 | 275.3 | 271.1 | 235.1 | 238.4 | 252.1 | 251.2 | 6.6 | 6.0 |
5 | 274.4 | 270.2 | 234.7 | 238.0 | 251.5 | 250.6 | 6.6 | 6.0 |
6 | 273.5 | 269.7 | 234.6 | 237.1 | 250.9 | 250.0 | 6.6 | 6.0 |
7 | 262.7 | 257.4 | 231.0 | 233.2 | 246.9 | 244.1 | 5.3 | 5.1 |
8 | 264.0 | 259.0 | 231.1 | 233.6 | 247.2 | 244.5 | 5.4 | 5.3 |
9 | 265.2 | 260.1 | 231.2 | 233.7 | 247.6 | 245.0 | 5.5 | 5.4 |
AD32 | Max (kN) | Min (kN) | Mean (kN) | Standard Deviation (kN) | ||||
---|---|---|---|---|---|---|---|---|
AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | AQWA | LSTM | |
1 | 276.6 | 268.0 | 233.2 | 233.2 | 252.9 | 251.2 | 7.6 | 7.5 |
2 | 277.2 | 270.6 | 233.3 | 233.3 | 253.5 | 252.5 | 7.8 | 8.0 |
3 | 277.8 | 273.3 | 233.6 | 233.6 | 254.2 | 254.0 | 8.0 | 8.5 |
4 | 275.4 | 267.8 | 243.1 | 247.6 | 257.8 | 256.2 | 5.5 | 3.7 |
5 | 275.2 | 267.7 | 243.1 | 247.5 | 257.4 | 255.9 | 5.6 | 3.8 |
6 | 275.7 | 268.5 | 243.0 | 247.0 | 257.1 | 255.6 | 5.7 | 4.2 |
7 | 266.2 | 260.6 | 229.5 | 232.1 | 246.4 | 243.6 | 6.4 | 5.9 |
8 | 265.8 | 260.1 | 229.4 | 232.2 | 246.1 | 243.2 | 6.2 | 5.4 |
9 | 265.2 | 258.9 | 229.3 | 232.1 | 245.9 | 242.7 | 5.9 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Jin, C.; Ma, G.; Yang, J.; Sun, L. Evaluation of Dynamic Tensions of Single Point Mooring System under Random Waves with Artificial Neural Network. J. Mar. Sci. Eng. 2022, 10, 666. https://doi.org/10.3390/jmse10050666
Li P, Jin C, Ma G, Yang J, Sun L. Evaluation of Dynamic Tensions of Single Point Mooring System under Random Waves with Artificial Neural Network. Journal of Marine Science and Engineering. 2022; 10(5):666. https://doi.org/10.3390/jmse10050666
Chicago/Turabian StyleLi, Peng, Conglin Jin, Gang Ma, Jie Yang, and Liping Sun. 2022. "Evaluation of Dynamic Tensions of Single Point Mooring System under Random Waves with Artificial Neural Network" Journal of Marine Science and Engineering 10, no. 5: 666. https://doi.org/10.3390/jmse10050666
APA StyleLi, P., Jin, C., Ma, G., Yang, J., & Sun, L. (2022). Evaluation of Dynamic Tensions of Single Point Mooring System under Random Waves with Artificial Neural Network. Journal of Marine Science and Engineering, 10(5), 666. https://doi.org/10.3390/jmse10050666