Recent Progress on Wave Energy Marine Buoys
Abstract
:1. Introduction
2. Energy Capture from Wave to Structure
2.1. OWC Prototype for Marine Buoys
2.2. OB Prototype for Marine Buoys
3. PTO from Structure to Wire
3.1. EMG-Based PTO
3.2. TENG-Based PTO
4. Applications of Wave Energy Marine Buoy
5. Conclusions and Prospects
- Concurrent marine buoys usually adopt solar photovoltaic systems as the in situ supplemental power, followed by wind turbines. However, the power density, access easiness and engineering factors make wave energy a more promising alternative (if not a replacement) for marine buoys.
- Wave energy capturing has evolved into three major categories. Though the design has not converged, some prototypes have entered full-scale sea trial stage, demonstrating partial readiness for commercialization. As far as a marine buoy is concerned, essentially, it prefers a smaller size, structure simplicity and axisymmetry for main geometry. Therefore, the two-body point absorber, OWC spar type buoy and single body point absorber appear to be more appropriate for marine buoys.
- Conventional rotational EMGs are the common PTOs for wave energy, and adopt turbine/gears to transmit the wave-induced motion to motor rotations. Linear direct generators are a developing technique used to directly utilize the significant relative heave motion. TENGs are a novel technique that directly converts miscellaneous mechanical energy to electricity. Their adaptivity to a high-entropy input makes them a promising alternative for small-scale buoys.
- The application of marine buoys has mainly extended to power supply buoys, navigation buoys, data/sensor buoys and aquaculture buoys. Power supply buoys and navigation buoys have partially implemented wave energy technologies with EMGs. Sensor buoys and aquaculture buoys require a relatively smaller scale. Therefore, wave energy technologies could become very effective in achieving self-power for these buoys.
- It is determined by the functions of many small-scale buoys that they are largely disposable. Wave energy technologies could extend such buoys’ service time so that the unit cost of such buoys can be greatly reduced. In this sense, wave energy PTO should be low-cost, simple and robust. A combination of a single OB and flexible track TENG seems to be a promising technique.
- Wave energy buoys tend to differentiate into “wave energy converter buoys” and “wave-energy-powered buoys”, which is indicated by the ratio of the PTO power to the load power. The former specialize in outputting the converted electricity to the clients, whereas the latter emphasize self-powering the applications on the buoy. Both of them need to improve the power density and reduce the costs. The philosophy of converter buoys is concerned more with hydrodynamic responses, whereas the philosophy of wave-powered buoys is concerned more with the integration level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.; Kim, T.; Kwak, J.; Kim, I.; Park, J.; Ha, K. Design of Korean Standard Modular Buoy Body Using Polyethylene Polymer Material for Ship Safety. J. Mater. Sci. Chem. Eng. 2016, 4, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Canepa, E.; Pensieri, S.; Bozzano, R.; Faimali, M.; Traverso, P.; Cavaleri, L. The ODAS Italia 1 buoy: More than forty years of activity in the Ligurian sea. Prog. Oceanogr. 2015, 135, 48–63. [Google Scholar] [CrossRef]
- Li, X.; Bian, Y. Modeling and prediction for the Buoy motion characteristics. Ocean Eng. 2021, 239, 109880. [Google Scholar] [CrossRef]
- Lin, M.; Yang, C. Ocean observation technologies: A review. Chin. J. Mech. Eng. 2020, 33, 32. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, J. Ocean-wide sensor array provides new look at global ocean current. Nature 2018, 554, 413–414. [Google Scholar] [CrossRef]
- Martínez-Osuna, J.; Ocampo-Torres, F.; Gutiérrez-Loza, L.; Valenzuela, E.; Castro, A.; Alcaraz, R.; Rodríguez, C.; Ulloa, L. Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico. Measurement 2021, 183, 109841. [Google Scholar] [CrossRef]
- Srinivasan, R.; Rajendran, V.; Zacharia, S.; Sudhakar, T.; Atmanand, M. Indigenized Indian Drifting Buoys with INSAT Communication for Ocean Observations. Ocean Eng. 2017, 145, 263–267. [Google Scholar] [CrossRef]
- Venkatesan, R.; Vengatesan, G.; Vedachalam, N.; Muthiah, M.; Lavanya, R.; Atmanand, M. Reliability assessment and integrity management of data buoy instruments used for monitoring the Indian Seas. Appl. Ocean Res. 2016, 54, 1–11. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration’s National Data Buoy Center. Available online: https://www.ndbc.noaa.gov/ (accessed on 12 March 2022).
- Wu, M.; Zhang, Y.; Sheng, S.; Lin, H.; Jiang, J. Development Status and Prospect of Ocean Wave Energy Buoy. Adv. New Renew. Energy 2021, 9, 42–47. (In Chinese) [Google Scholar]
- Shaikh, F.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Winchester, J. Development of Environmental Data Buoys. Nav. Eng. J. 1974, 86, 97–109. [Google Scholar] [CrossRef]
- Hunag, F.; Lv, X.; Chen, G. Detection Base for Maritime Meteorology-Buoy. Ocean Technol. 2011, 30, 46–49. (In Chinese) [Google Scholar]
- Wang, B.; Li, M.; Liu, S.; Chen, S.; Zhu, Q.; Wang, H. Current status and trend of ocean data buoy observation technology applications. Chin. J. Sci. Instrum. 2014, 35, 2401–2414. (In Chinese) [Google Scholar]
- Guillou, N.; Lavidas, G.; Chapalain, G. Wave energy resource assessment for exploitation-a review. J. Mar. Sci. Eng. 2020, 8, 705. [Google Scholar] [CrossRef]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renew. Sustain. Energy Rev. 2021, 135, 110162. [Google Scholar] [CrossRef]
- Dean, R.; Dalrymple, R. Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1991; pp. 187–201. [Google Scholar]
- Khan, F.; Pal, N.; Saeed, S. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renew. Sustain. Energy Rev. 2018, 92, 937–947. [Google Scholar] [CrossRef]
- AXYS Technologies Inc. WindSentinel Wind Resource Assessment Buoy. Available online: https://www.boem.gov/sites/default/files/renewable-energy-program/State-Activities/VA/VA-Commercial-Lease/COSW-Appendix-D-Wind-Sentinel-Buoy-Technical-Details.pdf (accessed on 28 March 2022).
- Lópeza, I.; Andreu, J.; Ceballos, S.; De Alegria, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Jin, S.; Greaves, D. Wave energy in the UK: Status review and future perspective. Renew. Sustain. Energy Rev. 2021, 143, 110932. [Google Scholar] [CrossRef]
- Chen, J.; Kim, M. Review of recent offshore wind turbine research and optimization methodologies in their design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Maxwell, S.; Kershaw, F.; Locke, C.; Conners, M.; Dawson, C.; Aylesworthe, S.; Loomis, R.; Johnson, A. Potential impacts of floating wind turbine technology for marine species and habitats. J. Environ. Manag. 2022, 307, 114577. [Google Scholar] [CrossRef] [PubMed]
- Parsa, K.; Mekhiche, M.; Sarokhan, J.; Stewart, D. Performance of OPT’s Commercial PB3 PowerBuoy™ during 2016 Ocean Deployment and Comparison to Projected Model Results. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Trondheim, Norway, 25–30 June 2017. [Google Scholar]
- Qiu, S.; Liu, K.; Wang, D.; Ye, J.; Liang, F. A comprehensive review of ocean wave energy research and development in China. Renew. Sustain. Energy Rev. 2019, 113, 109271. [Google Scholar] [CrossRef]
- Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [Google Scholar] [CrossRef]
- Amaechi, C.; Chesterton, C.; Butler, H.; Wang, F.; Ye, J. Review on the design and mechanics of bonded marine hoses for Catenary Anchor Leg Mooring (CALM) buoys. Ocean Eng. 2021, 242, 110062. [Google Scholar] [CrossRef]
- Liu, Z.; Qu, N.; Han, Z.; Zhang, J.; Zhang, S.; Li, M.; Shi, H. Study on energy conversion and storage system for a prototype buoys-array wave energy converter. Energy Sustain. Dev. 2016, 34, 100–110. [Google Scholar] [CrossRef]
- Falcao, A. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Contestabile, P.; Crispino, G.; Lauro, E.; Ferrante, V.; Gisonn, C.; Vicinanza, D. Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead. Renew. Energy 2020, 147, 705–718. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, H.; Cui, Y.; Kim, K. Experimental study on overtopping performance of a circular ramp wave energy converter. Renew. Energy 2017, 104, 163–176. [Google Scholar] [CrossRef]
- Frigaard, P.; Kofoed, J.; Knapp, W. Wave dragon wave power plant using low-head turbines. In Proceedings of the Hidroenergia 04: International Conference and Exhibition on Small Hydropower, Falkenberg, Sweden, 17–19 June 2004. [Google Scholar]
- Lauro, E.; Maza, M.; Lara, J.; Losada, I.; Contestabile, P.; Vicinanza, D. Advantages of an innovative vertical breakwater with an overtopping wave energy converter. Coast. Eng. 2020, 159, 103713. [Google Scholar] [CrossRef]
- Falcao, A.; Henriques, J. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- Doyle, S.; Aggidis, G. Development of multi-oscillating water columns as wave energy converters. Renew. Sustain. Energy Rev. 2019, 107, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, S.; Wang, D.; Wang, R. Research progress of ocean wave energy converters. J. Shandong Univ. (Eng. Sci.) 2021, 51, 63–75. (In Chinese) [Google Scholar]
- O’Sullivan, D.; Mollaghan, D.; Blavette, A.; Alcorn, R. Dynamic Characteristics of Wave and Tidal Energy Converters & a Recommended Structure for Development of a Generic Model for Grid Connection. Ph.D. Thesis, Ocean Energy Systems-Implementing Agreement (OES-IA), International Energy Agency, Paris, France, 2010. [Google Scholar]
- Hong, Y.; Waters, R.; Boström, C.; Eriksson, M.; Engström, J.; Leijon, M. Review on electrical control strategies for wave energy converting systems. Renew. Sustain. Energy Rev. 2014, 31, 329–342. [Google Scholar] [CrossRef]
- Heath, T.; Whittaker, T.; Boake, C. The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). In Proceedings of the 4th European Wave Energy Conference, Aalborg, Denmark, 4–6 December 2000. [Google Scholar]
- Torre-Enciso, Y.; Ortubia, I.; De Aguileta, L.; Marques, J. Mutriku wave power plant: From the thinking out to the reality. In Proceedings of the 8th European Wave Tidal Energy Conference, Uppsala, Sweden, 7–11 September 2009. [Google Scholar]
- Fonseca, N.; Pessoa, J. Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column. Appl. Ocean Res. 2013, 40, 60–73. [Google Scholar] [CrossRef]
- Wang, H.; Falzarano, J. Energy balance analysis method in oscillating type wave converter. J. Ocean Eng. Mar. Energy 2017, 3, 193–208. [Google Scholar] [CrossRef]
- Masuda, Y.; McCormick, E. Experiences in pneumatic wave energy conversion in Japan. In Proceedings of the 20th International Conference on Coastal Engineering, Taipei, Taiwan, 9–14 November 1986. [Google Scholar]
- Masuda, Y.; Kuboki, T.; Thakker, A.; Liang, X. Prospect of economical wave power electric generator by the terminator backward bent duct buoy (BBDB). In Proceedings of the 12th International Offshore and Polar Engineering Conference, Kyushu, Japan, 26–31 May 2002. [Google Scholar]
- Alcorn, R.; Blavette, A.; Healy, M.; Lewis, A. FP7 EU funded CORES wave energy project: A coordinators’ perspective on the Galway Bay sea trials. Underw. Technol. 2014, 32, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, T.; McPeake, F. Design optimization of axisymmetric tail tubebuoys. In Hydrodynamics of Ocean Wave Energy Utilization; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Tucker, A.; Pemberton, J.; Swift-Hook, D.; Swift-Hook, J.; Burrett, M.; Phillips, J. Laminated reinforced concrete technology for the SPERBOY wave energy converter. In Proceedings of the XI World Renewable Energy Congress, Abu Dhabi, UAE, 25–30 September 2010. [Google Scholar]
- Giorgi, G.; Ringwood, J. Articulating parametric resonance for an OWC spar buoy in regular and irregular waves. J. Ocean Eng. Mar. Energy 2018, 4, 311–322. [Google Scholar] [CrossRef]
- Gomes, R.; Henriques, J.; Gato, L.; Falcao, A. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion. Renew. Energy 2012, 44, 328–339. [Google Scholar] [CrossRef]
- Yang, S.; He, H.; Li, H.; Zang, J. Research Status and Prospect of Point Absorber Wave Power Generation Technology. J. Ocean Technol. 2016, 35, 8–16. [Google Scholar]
- Cleason, L.; Forsberg, J.; Rylander, A.; Sjöström, B. Contribution to the theory and experience of energy production and transmission from the buoy-concept. In Proceedings of the 2nd International Symposium on Wave Energy Utilization, Trondheim, Norway, 22–24 June 1982. [Google Scholar]
- Weinstein, A.; Fredrikson, G.; Parks, M.; Nielsen, K. AquaBuOY-the offshore wave energy converter numerical modeling and optimization. In Oceans’ 04 MTS/IEEE Techno-Ocean’ 04 (IEEE Cat. No. 04CH37600); IEEE: Kobe, Japan, 2004. [Google Scholar]
- Weber, J.; Mouwen, F.; Parrish, A.; Robertson, D. Wavebob-research & development network and tools in the context of systems engineering. In Proceedings of the 8th European Wave Tidal Energy Conference, Uppsala, Sweden, 7–11 September 2009. [Google Scholar]
- Ocean Power Technologies. Available online: https://oceanpowertechnologies.com/pb3-powerbuoy/ (accessed on 8 March 2022).
- Dalton, G.; Alcorn, R.; Lewis, T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renew. Energy 2010, 35, 443–455. [Google Scholar] [CrossRef]
- Henry, A.; Doherty, K.; Cameron, L.; Whittaker, T.; Doherty, R. Advances in the design of the oyster wave energy converter. In Proceedings of the Conference Marine Renewables and Offshore Wind Conference, London, UK, 21–23 April 2010. [Google Scholar]
- Professional Diving Services. Available online: https://www.profdivers.com/installation-of-biowave-energy-system/ (accessed on 10 March 2022).
- Sheng, S.; Wang, K.; Lin, H.; Zhang, Y.; You, Y.; Wang, Z.; Chen, A.; Jiang, J.; Wang, W.; Ye, Y. Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan. Renew. Energy 2017, 113, 587–595. [Google Scholar] [CrossRef]
- Ghafari, H.; Ghassemi, H.; He, G. Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform. Ocean Eng. 2021, 232, 109177. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, S.; You, Y.; Wang, K.; Wang, Z. Model research and open sea tests of 100 kW wave energy convertor. Adv. New Renew. Energy 2019, 7, 374–378. (In Chinese) [Google Scholar]
- Weaver, W.; Wilson, D.; Hagmuller, A.; Ginsburg, M.; Bacelli, G.; Robinett, R.; Coe, R.; Budi. Super capacitor energy storage system design for wave energy converter demonstration. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24–26 June 2020. [Google Scholar]
- Wang, H.; Fan, Z.; Zhao, T.; Dong, J.; Wang, S.; Wang, Y.; Xiao, X.; Liu, C.; Pan, X.; Zhao, Y.; et al. Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 2021, 84, 105920. [Google Scholar] [CrossRef]
- Nguyen, H.; Wang, C.; Tay, Z.; Luong, V. Wave energy converter and large floating platform integration: A review. Ocean Eng. 2020, 213, 107768. [Google Scholar] [CrossRef]
- Penalba, M.; Ringwood, J. A high-fidelity wave-to-wire model for wave energy converters. Renew. Energy 2019, 134, 367–378. [Google Scholar] [CrossRef]
- Rasool, S.; Muttaqi, K.; Sutanto, D. Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes. Renew. Energy 2020, 162, 2041–2055. [Google Scholar] [CrossRef]
- Ozkop, E.; Altas, I. Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renew. Sustain. Energy Rev. 2017, 67, 106–115. [Google Scholar] [CrossRef]
- Saenz-Aguirre, A.; Ulazia, A.; Ibarra-Berastegui, G.; Saenz, J. Extension and improvement of synchronous linear generator based point absorber operation in high wave excitation scenarios. Ocean Eng. 2021, 239, 109844. [Google Scholar] [CrossRef]
- Calado, M.; Godinho, P.; Mariano, S. Design of a new linear generator for wave energy conversion based on analytical and numerical analyses. J. Renew. Sustain. Energy 2012, 4, 033117. [Google Scholar] [CrossRef]
- Rhinefrank, K.; Agamloh, E.; von Jouanne, A.; Wallace, A.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Chan, P.; Sweeny, B.; et al. Novel ocean energy permanent magnet linear generator buoy. Renew. Energy 2006, 31, 1279–1298. [Google Scholar] [CrossRef]
- Yu, H.; Liu, C.; Yuan, B.; Hu, M.; Huang, L.; Zhou, S. A permanent magnet tubular linear generator for wave energy conversion. J. Appl. Phys. 2012, 111, 07A741. [Google Scholar] [CrossRef]
- Prudell, J.; Stoddard, M.; Amon, E.; Brekken, T.; Jouanne, A. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl. 2010, 46, 2392–2400. [Google Scholar] [CrossRef]
- Henriques, J.; Portillo, J.; Gato, L.; Gomes, R.; Ferreira, D.; Falcao, A. Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys. Energy 2016, 112, 852–867. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.; Lurie, R. Application of PowerBuoy wave energy converter technology to remote power requirements in oil and gas field developments. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2012. [Google Scholar]
- Ding, W.; Song, B.; Mao, Z.; Wang, K. Experimental investigations on a low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms. J. Mar. Sci. Technol. 2016, 21, 359–367. [Google Scholar] [CrossRef]
- Nicola, P.; Giovanni, B.; Biagio, P.; Antonello, S.; Giacomo, V.; Giuliana, M.; Gianmaria, S. Wave Tank Testing of a Pendulum Wave Energy Converter 1:12 Scale Model. Int. J. Appl. Phys. 2017, 9, 1750024. [Google Scholar] [CrossRef] [Green Version]
- Yerrapragada, K.; Ansari, M.; Karami, M. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling. Smart Mater. Struct. 2017, 26, 094003. [Google Scholar] [CrossRef]
- Liang, C.; Ai, J.; Zuo, L. Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Eng. 2017, 136, 190–200. [Google Scholar] [CrossRef]
- Joe, H.; Roh, H.; Cho, H.; Yu, S. Development of a flap-type mooring-less wave energy harvesting system for sensor buoy. Energy 2017, 133, 851–863. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, H.; Hu, M.; Meng, G.; Wen, C. A review of offshore wave energy extraction system. Adv. Mech. Eng. 2013, 5, 623020. [Google Scholar] [CrossRef]
- Waters, R.; Stalberg, M.; Danielsson, O.; Svensson, O.; Gustafsson, S.; Stromstedt, E.; Eriksson, M.; Sundberg, J.; Leijon, M. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007, 90, 034105. [Google Scholar] [CrossRef]
- Graves, J.; Kuang, Y.; Zhu, M. Scalable pendulum energy harvester for unmanned surface vehicles. Sens. Actuators A Phys. 2020, 315, 112356. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Huang, M.; Ma, X.; Chen, Z.; Liu, H.; Sun, L. Study of an electromagnetic ocean wave energy harvester driven by an efficient swing body toward the self-powered ocean buoy application. IEEE Access 2019, 7, 129758–129769. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, M.; Liu, H.; Ma, X.; Chen, Z.; Chen, T.; Sun, L. Design and experiment of an electromagnetic ocean wave energy harvesting device. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 381–384. [Google Scholar]
- Faria, C.; Goncalves, L.; Martins, M.; Lima, R. Energy Harvesting to Increase the Autonomy of Moored Oceanographic Monitoring Stations. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018. [Google Scholar]
- Elwood, D.; Schacher, A.; Rhinefrank, K.; Prudell, J.; Yim, S.; Amon, E.; Brekken, T.; von Jouanne, A. Numerical modeling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off. In Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009. [Google Scholar]
- Von Jouanne, A.; Brekken, T. Wave energy research, development and demonstration at Oregon State University. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Zi, Y.; Guo, H.; Wen, Z.; Yeh, M.; Hu, C.; Wang, Z. Harvesting low-frequency (<5Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, M.; Dong, M.; Guo, F.; Liu, X.; Chen, G.; Wang, Z. Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renew. Sustain. Energy Rev. 2019, 115, 109366. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, M.; Zhang, C.; Wang, Y.; Zou, H.; He, X.; Wang, Z.; Wang, Z. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy 2018, 48, 421–429. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Bu, T.; Yang, H.; Liu, G.; Li, W.; Pang, Y.; Hu, C.; Zhang, C.; Cheng, T. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 2019, 58, 499–507. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H.; Kong, D.; Choi, M.; Kim, H.; Lee, J.; Murillo, G.; Lee, M.; Kim, S.; Jung, J. Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 2018, 45, 247–254. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; Jiang, T.; Youssef, K.; Liu, L.; Hedaya, M.; Abu Yazid, T.; Zu, J.; Wang, Z. Design guidelines of triboelectric nanogenerator for water wave energy harvesters. Nanotechnology 2017, 28, 185403. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Guo, H.; Wen, Z.; Zhang, C.; Yin, X.; Li, X.; Liu, D.; Song, W.; Sun, X.; Wang, J.; et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, T.; Wang, C.; Zhang, S.; Li, Z.; Pan, X.; Wang, Z. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Jurado, U.; Pu, S.; White, N. A contact-separation mode triboelectric nanogenerator for ocean wave impact energy harvesting. In Proceedings of the 16th IEEE Sensors Conference, Glasgow, UK, 29 October–1 November 2017. [Google Scholar]
- Xu, L.; Pang, Y.; Zhang, C.; Jiang, T.; Chen, X.; Luo, J.; Tang, W.; Cao, X.; Wang, Z. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 2017, 31, 351–358. [Google Scholar] [CrossRef]
- An, J.; Wang, Z.; Jiang, T.; Liang, X.; Wang, Z. Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1904867. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, C.; Wang, W.; Xu, R.; Chen, P.; Du, T.; Xue, T.; Wang, Z.; Xu, M. A stackable triboelectric nanogenerator for wave-driven marine buoys. Nanomaterials 2022, 12, 594. [Google Scholar] [CrossRef]
- Zhong, W.; Xu, L.; Yang, X.; Tang, W.; Shao, J.; Chen, B.; Wang, Z. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale 2019, 11, 7199–7208. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 2017, 32, 36–41. [Google Scholar] [CrossRef]
- Hou, C.; Chen, T.; Li, Y.; Huang, M.; Shi, Q.; Liu, H.; Sun, L.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Z.; Liao, X.; Qiao, L.; Li, Y.; Dong, S.; Zhang, Z.; Zhang, B. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 2021, 89, 106381. [Google Scholar] [CrossRef]
- Zhou, Y. Application research status and development direction of wave energy power generation technology. Mod. Ind. Econ. Informationization 2020, 10, 105–106. (In Chinese) [Google Scholar]
- Tomisa, T.; Krajcar, S.; Pinezic, D. Multipurpose marine buoy. In Proceedings of the 50th International Symposium ELMAR, Borik Zadar, Croatia, 10–12 September 2008. [Google Scholar]
- Salcedo, F.; Ruiz-Minguela, P.; Rodriguez, R.; Ricci, P.; Santos, M. Oceantec: Sea trials of a quarter scale prototype. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Bozzi, S.; Besio, G.; Passoni, G. Wave power technologies for the Mediterranean offshore: Scaling and performance analysis. Coast. Eng. 2018, 136, 130–146. [Google Scholar] [CrossRef]
- Patel, S. Ocean Power Technologies Deploys Commercial PowerBuoy with Energy Storage. Power 2016, 160, 10. [Google Scholar]
- Lewis, T. Demonstration of the Ocean Energy (OE) Buoy at US Navy’s Wave Energy Test Site. Available online: https://www.energy.gov/sites/prod/files/2019/12/f69/07_EE0006924_OceanEnergy_Lewis_%20Mauer_Final.pdf (accessed on 28 February 2022).
- Tsabaris, C.; Ballas, D. On line gamma-ray spectrometry at open sea. Appl. Radiat. Isot. 2005, 62, 83–89. [Google Scholar] [CrossRef]
- Organelli, E.; Bricaud, A.; Antoine, D.; Uitz, J. Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). Appl. Opt. 2013, 52, 2257–2273. [Google Scholar] [CrossRef]
- Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F.; Tailliez, C.; Iffly, J.; Corato, G. A drifting GPS buoy for retrieving effective riverbed bathymetry. J. Hydrol. 2015, 520, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Zacharia, S.; Sudhakar, T.; Atmanand, M. Indigenous drifting buoys for the Indian Ocean observations. In Proceedings of the MTS/IEEE Oceans Conference, Monterey, CA, USA, 19–23 September 2016. [Google Scholar]
- Turmelle, C.; Swift, M.; Celikkol, B.; Chambers, M.; DeCew, J.; Fredriksson, D.; Rice, G.; Swanson, K. Design of a 20-ton capacity finfish aquaculture feeding buoy. In Proceedings of the Oceans 2006 Conference, Boston, MA, USA, 18–21 September 2006. [Google Scholar]
- Cillari, T.; Allegra, A.; Andaloro, F.; Gristina, M.; Milisenda, G.; Sinopoli, M. The use of echo-sounder buoys in Mediterranean Sea: A new technological approach for a sustainable FADs fishery. Ocean Coast. Manag. 2018, 152, 70–76. [Google Scholar] [CrossRef]
- Schmidt, W.; Raymond, D.; Parish, D.; Ashton, I.; Miller, P.; Campos, C.; Shutler, J. Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring. Aquac. Eng. 2018, 80, 28–36. [Google Scholar] [CrossRef]
- Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S. A Sustainable Blue Energy Scavenging Smart Buoy toward Self-Powered Smart Fishing Net Tracker. ACS Sustain. Chem. Eng. 2020, 10, 4120–4127. [Google Scholar] [CrossRef]
- AquaEnergy Group. Available online: https://cordis.europa.eu/project/id/38595 (accessed on 6 March 2022).
- Energyglobal. Available online: https://www.energyglobal.com/other-renewables/27012022/aws-wave-energy-converter-arrives-in-orkney/ (accessed on 3 March 2022).
- Zhang, Y.; Sheng, S.; You, Y.; Wang, K.; Wang, Z. Development status and application direction of wave energy generation technology. Adv. New Renew. Energy 2019, 7, 374–378. (In Chinese) [Google Scholar]
- Guangzhou Energy Research Institute, Chinese Academy of Science. Available online: http://giec.cas.cn/kxyj2016/kyjz2016/202012/t20201225_5842562.html (accessed on 1 March 2022).
- Wang, J.; Wang, Z.; Wang, Y.; Liu, S.; Li, Y. Current situation and trend of marine data buoy and monitoring. Acta Oceanol. Sin. 2016, 35, 1–10. [Google Scholar] [CrossRef]
- Laurindo, L.; Mariano, A.; Lumpkin, R. An improved near-surface velocity climatology for the global ocean from drifter observations. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2017, 124, 73–92. [Google Scholar] [CrossRef]
- Lee, D.; Centurioni, L. Water following characteristics of Global Drifter Program drifters with and without subsurface float. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2018, 137, 20–29. [Google Scholar] [CrossRef]
- Lumpkin, R.; Johnson, G. Global ocean surface velocities from drifters: Mean, variance, El Nino-Southern Oscillation response, and seasonal cycle. J. Geophys. Res. Oceans 2013, 118, 2992–3006. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Pichel, W.; Li, Z. Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4743–4750. [Google Scholar] [CrossRef]
- Powell, M.; Houston, S.; Amat, L.; Morisseau-Leroy, N. The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn. 1998, 77, 53–64. [Google Scholar] [CrossRef]
- Albaladejo, C.; Soto, F.; Torres, R.; Sanchez, P. Lopez, J. A low-cost sensor buoy system for monitoring shallow marine environments. Sensors 2012, 12, 9613–9634. [Google Scholar] [CrossRef]
- Morrison, A.; Billings, J.; Doherty, K. The Mclane moored profiler: An autonomous platform for oceanographic measurements. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, RI, USA, 11–14 September 2000. [Google Scholar]
- Kolding, M.; Sagstad, B. Cable-Free Automatic Profilling Buoy Real-Time Oceanographic Profiles from Low-Maintenance Buoy. Sea Technol. 2013, 54, 10–12. [Google Scholar]
- Walczowski, W.; Merchel, M.; Rak, D.; Wieczorek, P.; Goszczko, I. Argo floats in the southern Baltic Sea. Oceanologia 2020, 62, 478–488. [Google Scholar] [CrossRef]
- Apel, H.; Hung, N.; Thoss, H.; Schoene, T. GPS buoys for stage monitoring of large rivers. J. Hydrol. 2012, 412, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.; Fowler, G.; Beanlands, B. Long-term monitoring with a moored wave-powered profiler. Sea Technol. 1999, 40, 68–69. [Google Scholar]
- Pinkel, R.; Goldin, M.; Smith, J.; Sun, O.; Aja, A.; Bui, M.; Hughen, T. The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves. J. Atmos. Ocean. Technol. 2011, 28, 426–435. [Google Scholar] [CrossRef]
- Wang, X.; Shang, J.; Luo, Z.; Tang, L.; Zhang, X.; Li, J. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew. Sustain. Energy Rev. 2012, 16, 1958–1970. [Google Scholar] [CrossRef]
- Tocreo Labs & Tocreo Labs. Available online: http://ericgreeneassociates.com/images/Micro_Ocean_Renewable_Energy.pdf (accessed on 10 March 2022).
- Zhao, T.; Xu, M.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199. [Google Scholar] [CrossRef]
- Green, R.; Copping, A.; Cavagnaro, R.J.; Rose, D.; Overhus, D.; Jenne, D. Enabling power at sea opportunities for expanded ocean observations through marine renewable energy integration. In Proceedings of the MTS/IEEE Oceans Seattle Conference, Seattle, WA, USA, 27–31 October 2019. [Google Scholar]
- Irish, J.; Boduch, S.; DeCew, J.; Paul, W. Study of a three point mooring of an open ocean aquaculture feed buoy. In Proceedings of the 2007 OCEANS Conference, Vancouver, BC, Canada, 29 September–4 October 2007. [Google Scholar]
- Xi, F.; Pang, Y.; Liu, G.; Wang, S.; Li, W.; Zhang, C.; Wang, Z. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, C.; Ramos, M.; Esteves, R.; Correia, J.; Clemente, D.; Gonçalves, F.; Mathias, N.; Gomes, M.; Silva, J.; Duarte, C.; et al. Integrated study of triboelectric nanog enerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions. Nano Energy 2021, 84, 105890. [Google Scholar] [CrossRef]
- Shen, F.; Li, Z.; Guo, H.; Yang, Z.; Wu, H.; Wang, M.; Luo, J.; Xie, S.; Peng, Y.; Pu, H. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Electron. Mater. 2021, 7, 2100277. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Chandrasekhar, A.; Vivekananthan, V.; Kim, S. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 2020, 69, 104439. [Google Scholar] [CrossRef]
- Vella, N.; Foley, J.; Sloat, J.; Sandoval, A.; D’Attile, L.; Masoumi, M. A modular wave energy converter for observational and navigational buoys. Fluids 2022, 7, 88. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Chen, J.; Lu, S.; Zhou, H.; Wang, T.; Wang, A.; Zhang, Z.; Guo, S.; Mu, X.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
Name | Type | Prototype Main Shape | Maximum Power | References |
---|---|---|---|---|
An electromagnetic wave energy collector | Pendulum | Conventional rotating generator | 200 W/m3 | [76] |
A vertical inertial pendulum wave energy collector | Pendulum | Conventional rotating generator | 235 W | [77] |
A horizontal pendulum wave energy collector | Pendulum | Conventional rotating generator | 4.79 mW | [78] |
An electromagnetic ocean-wave-energy-harvesting device | Pendulum | Conventional rotating generator | 122 mW | [85] |
A low-cost micro-linear generator to harvest energy | Cylinder | Linear generator | 20 mW | [86] |
A wave power plant | Cylinder | Linear generator | 12 kW | [82] |
L-10 wave energy conversion | Cylinder | Linear generator | 5 kW | [87] |
Permanent magnet linear generator wave energy buoy. | Cylinder | Linear generator | 10 kW | [88] |
Name | Prototype Main Shape | Category | Major Material | Power Density | References |
---|---|---|---|---|---|
Torus-structured TENG | Rings | Fixed trajectory | Cuba, FEP, Nylon, Photopolymer | 0.21 W/m2 | [93] |
Tower-like TENG | Tower | Unfixed trajectory | PTFE, Nylon, Metal electrode | 1.03 W/m3 | [97] |
Open-book-like TENG | Book | Vertical contact separation | Al, PTFE | 7.45 W/m3 | [102] |
Whirling-Folded TENG | Cube | Vertical contact separation | FEP, PLA, Kapton, Cu | 12.4 W/m3 | [100] |
Stackable TENG | Stackable | Fixed trajectory | PTFE, Al, PLA | 49 W/m3 | [101] |
Hybridized EMG/TENG | Rectangle | Vertical contact separation | FEP, Cu, Kapton, Acrylic, Magnet | 39.5 W/m3 + 58.1 W/m3 | [103] |
Applications | Name | Prototype Main Shape | Year | References |
---|---|---|---|---|
Power supply buoys | OCEANTEC WEC | AUV-shaped | 2009 | [108] |
Wavebob | Cylinder | 2009 | [109] | |
PB3 power buoy | Cylinder | 2016 | [110] | |
OEbuoy | Elliptical | 2019 | [111] | |
Ocean data buoys | POSEIDON buoy | Cylinder | 2005 | [112] |
BOUSSOLE | Tower-type | 2013 | [113] | |
A canoe-box GPS buoy | Hemisphere | 2015 | [114] | |
Indigenized Indian drifting buoy | Sphere | 2017 | [115] | |
Aquaculture buoys | Finfish aquaculture feeding buoy | Cylinder | 2006 | [116] |
Echo-sounder buoys | NA | 2018 | [117] | |
A low-cost compact autonomous buoy | Cylinder | 2018 | [118] | |
Self-Powered Smart Fishing Net Tracker | Cone | 2022 | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Wang, H.; Xi, Z.; Wang, W.; Xu, M. Recent Progress on Wave Energy Marine Buoys. J. Mar. Sci. Eng. 2022, 10, 566. https://doi.org/10.3390/jmse10050566
Xu R, Wang H, Xi Z, Wang W, Xu M. Recent Progress on Wave Energy Marine Buoys. Journal of Marine Science and Engineering. 2022; 10(5):566. https://doi.org/10.3390/jmse10050566
Chicago/Turabian StyleXu, Ruijiang, Hao Wang, Ziyue Xi, Weichen Wang, and Minyi Xu. 2022. "Recent Progress on Wave Energy Marine Buoys" Journal of Marine Science and Engineering 10, no. 5: 566. https://doi.org/10.3390/jmse10050566
APA StyleXu, R., Wang, H., Xi, Z., Wang, W., & Xu, M. (2022). Recent Progress on Wave Energy Marine Buoys. Journal of Marine Science and Engineering, 10(5), 566. https://doi.org/10.3390/jmse10050566