# Numerical Study on the Mooring Force in an Offshore Fish Cage Array

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Model

_{n}is the solidity of the net, d is the thickness of one twine, and L is the length of the mesh bar. Due to the lack of data on the wake effect of currents and waves, the current velocity reduction after each cage is assumed as 15% from the experiment under uniform flow [5].

_{1}is wave height, h is the depth of the fluid, ω is the angular frequency of the wave, x and z are coordinates of the point.

_{M}is the mass coefficient, C

_{d}is drag coefficient, $\rho $ is the density of seawater, D is the diameter of the slender structure, u and $\dot{u}$ are the velocity and acceleration of the water particle, $\dot{x}$ and $\ddot{x}$ are the velocity and acceleration of the structure element.

_{a}is assumed to be 0. The pretension is set as 1 kN. The location of the mooring line (x, z) as a function of s can be expressed as [39]:

_{b}and f

_{H}are the load including gravity, buoyancy and hydrodynamic load from currents and waves, respectively.

## 3. Results

**Figure 4.**The instantaneous axial force distribution, unit: N. (current velocity = 0.5 m/s, wave height = 1 m, wave period = 10 s, time = 120 s).

#### 3.1. Numerical Model Subjected to Different Current Velocities

#### 3.2. Numerical Model Subjected to Waves of Different Heights

#### 3.3. Numerical Model Subjected to Different Attack Angles

## 4. Discussion

#### 4.1. Mooring Force Distribution

#### 4.2. Approximation of Wake Flow in APDL

_{0}. The drag force in the Morison equation can be expressed as:

## 5. Conclusions

- The cages deform more and move further away from their initial position with the increase of the current velocity.
- Both the mean values and the amplitudes of mooring forces increase with the current velocity and wave height. The tops of the upstream main ropes have the maximum mooring force under all sea states, which is also the connection location of multi-components. It should be the most concerned location for future research.
- The mooring forces on the frame ropes are the smallest while most frame ropes are slack. The downstream frame ropes do not play a structural role and can be removed.
- In most cases, the two adjacent bridle ropes do not pull the cage together, as the mooring force on one bridle rope is usually much larger than the other one. Thus, the two adjacent ropes do not always effectively reduce the stress concentration.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- FAO. The State of World Fisheries and Aquaculture; Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension; Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Holmer, M. Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquac. Environ. Interact.
**2010**, 1, 57–70. [Google Scholar] [CrossRef] [Green Version] - Benetti, D.D.; Benetti, G.I.; Rivera, J.A.; Sardenberg, B.; O’Hanlon, B. Site Selection Criteria for Open Ocean Aquaculture. Mar. Technol. Soc. J.
**2010**, 44, 22–35. [Google Scholar] [CrossRef] - Xu, Z.; Qin, H. Fluid-structure interactions of cage based aquaculture: From structures to organisms. Ocean Eng.
**2020**, 217, 107961. [Google Scholar] [CrossRef] - Føre, H.M.; Endresen, P.C.; Bjelland, H.V. Load Coefficients and Dimensions of Raschel Knitted Netting Materials in Fish Farms. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, Online, 21–30 June 2021; Volume 6: Ocean Engineering, p. V006T06A044. [Google Scholar] [CrossRef]
- Dong, S.; You, X.; Hu, F. Experimental investigation on the fluid–structure interaction of a flexible net cage used to farm Pacific bluefin tuna (Thunnus orientalis). Ocean Eng.
**2021**, 226, 108872. [Google Scholar] [CrossRef] - Hou, H.-M.; Dong, G.-H.; Xu, T.-J. Analysis of probabilistic fatigue damage of mooring system for offshore fish cage considering long-term stochastic wave conditions. Ships Offshore Struct.
**2020**, 1–12. [Google Scholar] [CrossRef] - Fredriksson, D.W.; DeCew, J.C.; Tsukrov, I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture. Ocean Eng.
**2007**, 34, 2124–2137. [Google Scholar] [CrossRef] - Moe, H.; Fredheim, A.; Heide, M.A. New net cage de-signs to prevent tearing during handling. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Guedes Soares, C., Garbatov, Y., Fonseca, N., Eds.; Taylor & Francis Group: London, UK, 2005; pp. 1265–1272. [Google Scholar]
- Endresen, P.C.; Føre, M.; Fredheim, A.; Kristiansen, D.; Enerhaug, B. Numerical Modeling of Wake Effect on Aquaculture Nets. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013; Volume 3: Materials Technology, Ocean Space Utilization. p. V003T05A027. [Google Scholar]
- Bai, X.-D.; Xu, T.-J.; Zhao, Y.-P.; Dong, G.-H.; Bi, C.-W. Fatigue assessment for the floating collar of a fish cage using the deterministic method in waves. Aquac. Eng.
**2016**, 74, 131–142. [Google Scholar] [CrossRef] - Zhao, Y.-P.; Bi, C.-W.; Chen, C.-P.; Li, Y.-C.; Dong, G. Experimental study on flow velocity and mooring loads for multiple net cages in steady current. Aquac. Eng.
**2015**, 67, 24–31. [Google Scholar] [CrossRef] - Fu, S.; Xu, Y.; Hu, K.; Zhang, Y. Experimental investigation on hydrodynamics of floating cylinder in oscillatory and steady flows by forced oscillation test. Mar. Struct.
**2013**, 34, 41–55. [Google Scholar] [CrossRef] - Berstad, A.J.; Tronstad, H. Response from current and regular/irregular waves on a typical polyethylene fish farm. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Guedes Soares, C., Garbatov, Y., Fonseca, N., Eds.; Taylor & Francis Group: London, UK, 2005; pp. 1189–1196. [Google Scholar]
- Lee, C.W.; Kim, H.S.; Lee, G.H.; Koo, K.Y.; Choe, M.Y.; Cha, B.J.; Jeong, S.J. Computation modeling of the moored flexible structures. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Guedes Soares, C., Garbatov, Y., Fonseca, N., Eds.; Taylor & Francis Group: London, UK, 2005; pp. 1239–1243. [Google Scholar]
- Li, L.; Fu, S.; Xu, Y.; Wang, J.; Yang, J. Dynamic responses of floating fish cage in waves and current. Ocean Eng.
**2013**, 72, 297–303. [Google Scholar] [CrossRef] - Li, L.; Fu, S.; Xu, Y. Nonlinear hydroelastic analysis of an aquaculture fish cage in irregular waves. Mar. Struct.
**2013**, 34, 56–73. [Google Scholar] [CrossRef] - DeCew, J.; Fredriksson, D.; Lader, P.; Chambers, M.; Howell, W.; Osienki, M.; Celikkol, B.; Frank, K.; Høy, E. Field measurements of cage deformation using acoustic sensors. Aquac. Eng.
**2013**, 57, 114–125. [Google Scholar] [CrossRef] - Gansel, L.C.; Oppedal, F.; Birkevold, J.; Tuene, S.A. Drag forces and deformation of aquaculture cages—Full-scale towing tests in the field. Aquac. Eng.
**2018**, 81, 46–56. [Google Scholar] [CrossRef] - Guo, Y.; Mohapatra, S.; Guedes Soares, C. Review of developments in porous membranes and net-type structures for breakwaters and fish cages. Ocean Eng.
**2020**, 200, 107027. [Google Scholar] [CrossRef] - Dong, G.-H.; Hou, H.-M.; Xu, T.-J. Model uncertainty in hydrodynamic characteristics by numerical models for aquaculture plant and mooring system. Ocean Eng.
**2021**, 219, 108383. [Google Scholar] [CrossRef] - Bernardo, T.; Guedes Soares, C. Validation of tools for the analysis of offshore aquaculture installations. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor and Francis: London, UK, 2021; Volume 2, pp. 685–692. [Google Scholar] [CrossRef]
- Mohapatra, S.; Bernardo, T.; Guedes Soares, C. Dynamic wave induced loads on a moored flexible cylindrical net cage with analytical and numerical model simulations. Appl. Ocean Res.
**2021**, 110, 102591. [Google Scholar] [CrossRef] - Zhang, D.P.; Bai, Y.; Guedes Soares, C. Dynamic Analysis of an Array of Semi-rigid “Sea Station” Fish Cages subjected to waves. Aquac. Eng.
**2021**, 94, 102172. [Google Scholar] [CrossRef] - Xu, S.; Wang, S.; Guedes Soares, C. Review of mooring design for floating wave energy converters. Renew. Sustain. Energy Rev.
**2019**, 111, 595–621. [Google Scholar] [CrossRef] - Weller, S.; Johanning, L.; Davies, P.; Banfield, S. Synthetic mooring ropes for marine renewable energy applications. Renew. Energy
**2015**, 83, 1268–1278. [Google Scholar] [CrossRef] [Green Version] - Thomsen, J.B.; Kofoed, J.P.; Delaney, M.; Banfield, S. Initial Assessment of Mooring Solutions for Floating Wave Energy Converters. In Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–2 July 2016; pp. 590–596. [Google Scholar]
- Wang, S.; Xu, S.; Xiang, G.; Guedes Soares, C. An overview of synthetic mooring cables in marine application. In Advances in Renewable Energies Offshore; Guedes Soares, C., Ed.; Taylor and Francis Group: London, UK, 2019; pp. 853–863. [Google Scholar]
- Lian, Y.; Liu, H.; Li, L.; Zhang, Y. An experimental investigation on the bedding-in behavior of synthetic fiber ropes. Ocean Eng.
**2018**, 160, 368–381. [Google Scholar] [CrossRef] - Xu, S.; Wang, S.; Guedes Soares, C. Experimental investigation on hybrid mooring systems for wave energy converters. Renew. Energy
**2020**, 158, 130–153. [Google Scholar] [CrossRef] - Wang, S.; Xu, S.; Guedes Soares, C.; Zhang, Y.; Liu, H.; Li, L. Experimental study of nonlinear behavior of a nylon mooring rope at different scales. In Developments in Renewable Energies Offshore; Guedes Soares, C., Ed.; Taylor and Francis: London, UK, 2020; pp. 690–697. [Google Scholar] [CrossRef]
- Liu, Z.; Mohapatra, S.; Guedes Soares, C. Finite Element Analysis of the Effect of Currents on the Dynamics of a Moored Flexible Cylindrical Net Cage. J. Mar. Sci. Eng.
**2021**, 9, 159. [Google Scholar] [CrossRef] - Liu, Z.; Garbatov, Y.; Guedes Soares, C. Numerical modelling of full-scale aquaculture cages under uniform flow. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor and Francis: London, UK, 2021; Volume 2, pp. 705–712. [Google Scholar] [CrossRef]
- Moe-Føre, H.; Lader, P.; Lien, E.; Hopperstad, O. Structural response of high solidity net cage models in uniform flow. J. Fluids Struct.
**2016**, 65, 180–195. [Google Scholar] [CrossRef] - Huang, C.-C.; Tang, H.-J.; Liu, J.-Y. Effects of waves and currents on gravity-type cages in the open sea. Aquac. Eng.
**2008**, 38, 105–116. [Google Scholar] [CrossRef] - Endresen, P.C.; Birkevold, J.; Føre, M.; Fredheim, A.; Kristiansen, D.; Lader, P. Simulation and Validation of a Numerical Model of a Full Aquaculture Net-Cage System. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014; Professor Emeritus, J. Randolph Paulling Honoring Symposium on Ocean Technology. Volume 7: Ocean Space Utilization, p. V007T05A006. [Google Scholar]
- Chakrabarti, S.K. Handbook of Offshore Engineering; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Faltinsen, O.M. Viscous Wave Loads and Damping. In Sea Loads on Ships and Offshore Structures; Cambridge University Press: Cambridge, UK, 1990; pp. 223–226. [Google Scholar]
- Faltinsen, O.M. Stationkeeping. In Sea Loads on Ships and Offshore Structures; Cambridge University Press: Cambridge, UK, 1990; pp. 257–270. [Google Scholar]

**Figure 6.**Deformation of fish cages under waves with a period of 10 s and a height of 1 m and different current velocities: (

**a**) current velocity = 0.25 m/s, (

**b**) current velocity = 0.5 m/s, (

**c**) current velocity = 0.75 m/s, (

**d**) current velocity = 1 m/s.

**Figure 7.**Deformation of upstream mooring cables: (

**a**) under current velocity of 0.25 m/s, (

**b**) under current velocity of 1 m/s).

**Figure 8.**Locations of the maximum mooring force (black: on main ropes, red: on bridle ropes, green: on frame ropes).

Parameters | Original Structure | Adjusted Structure |
---|---|---|

Density (kg/m^{3}) | 1140 | 1140 |

Young’s modulus (GPa) | 1.4 | 1.4 |

Twine diameter (mm) | 2.7 | N.A. |

Length of the mesh bar (mm) | 24 | N.A. |

Total Number of horizontal lines | 417 | 9 |

Total Number of vertical lines | 3140 | 20 |

Cross-section of each mesh bar (mm^{2}) | 5.73 | 265.07 (Horizontal lines) 899.37 (Vertical lines) |

Component | Dimension/Parameter | Value |
---|---|---|

Collar | Material type | HDPE |

Young’s modulus (GPa) | 0.65 | |

Diameter (m) | 24 | |

Cross-section diameter (m) | 0.5 | |

Thickness (mm) | 50 | |

Net | Material type | Nylon |

Young’s modulus (GPa) | 1.4 | |

Twine thickness (mm) | 2 | |

Solidity | 0.21 | |

Density (kg/m^{3}) | 1140 | |

Bottom ring | Material type | HDPE |

Young’s modulus (GPa) | 0.65 | |

Weight/length (kg/m) | 32 | |

Buoy | Buoyancy (kN) | 3 |

Bridle/frame rope | Material type | HMPE |

Stiffness, AE (N) | 1.25 × 10^{8} | |

Frame rope depth (m) | 3 | |

Distance between cages (m) | 6 | |

Submerged weight/length (N/m) | 9.92 | |

Breaking strength (kN) | 920 | |

Main rope | Material type | Six-strand wire rope (IWRC) HMPE |

Stiffness, AE (N) | 7.2 × 10^{7} | |

Anchor depth (m) | 50 | |

Submerged weight/length (N/m) | 54.4 | |

Breaking strength (kN) | 840 |

**Table 3.**The mean values and amplitudes of the maximum mooring forces in different parts of the mooring system under different current velocities.

Current Velocity (m/s) | 0.25 | 0.5 | 0.75 | 1 |
---|---|---|---|---|

Mean value_Main ropes (kN) | 21.88 | 48.41 | 80.97 | 116.52 |

Amplitude_Main ropes (kN) | 5.08 | 7.26 | 11.39 | 14.36 |

Mean value_Frame ropes (kN) | 4.50 | 12.68 | 22.86 | 35.23 |

Amplitude_Frame ropes (kN) | 1.83 | 1.20 | 1.02 | 2.42 |

Mean value_Bridle ropes kN) | 11.44 | 22.30 | 35.72 | 49.10 |

Amplitude_Bridle ropes (kN) | 2.13 | 4.26 | 6.69 | 6.73 |

Current Velocity (m/s) | 0.5 | 0.75 | 1 |
---|---|---|---|

Mean value_Bridle rope 1 (kN) | 22.29 | 35.73 | 49.10 |

Mean value_Bridle rope 2 (kN) | 0.15 | 0.18 | 0.28 |

Mean value_Bridle rope 3 (kN) | 0.18 | 0.26 | 0.50 |

Mean value_Bridle rope 4 (kN) | 17.89 | 29.55 | 42.02 |

**Table 5.**Mean values and amplitudes of the maximum mooring forces in different parts of the mooring system under different wave heights.

Wave Height (m/s) | 0.5 | 0.75 | 1 |
---|---|---|---|

Mean value_Main ropes (kN) | 44.73 | 45.97 | 48.41 |

Amplitude_Main ropes (kN) | 3.40 | 5.10 | 7.26 |

Mean value_Frame ropes (kN) | 11.91 | 12.12 | 12.68 |

Amplitude_Frame ropes (kN) | 0.83 | 0.95 | 1.2 |

Mean value_Bridle ropes kN) | 20.49 | 21.09 | 22.30 |

Amplitude_Bridle ropes (kN) | 2.11 | 3.07 | 4.26 |

**Table 6.**Mean values and amplitudes of the mooring forces on main ropes under different attack angles.

Attack Angle (°) | 0 | 22.5 | 45 | 67.5 | 90 |
---|---|---|---|---|---|

Mean value_Main rope 1 (kN) | 48.41 | 44.65 | 29.74 | 12.20 | 4.49 |

Amplitude_Main rope 1 (kN) | 7.26 | 8.19 | 11.6 | 3.12 | 0.38 |

Mean value_Main cable 2 (kN) | 22.09 | 29.41 | 22.83 | 8.43 | 3.63 |

Amplitude_Main rope 2 (kN) | 4.18 | 7.03 | 5.90 | 1.96 | 0.31 |

Mean value_Main cable 3 (kN) | 3.55 | 7.36 | 16.38 | 25.52 | 18.92 |

Amplitude_Main cable 3 (kN) | 0.31 | 1.86 | 7.57 | 8.5 | 5.43 |

Mean value_Main cable 4 (kN) | 5.95 | 24.46 | 45.56 | 42.32 | 38.49 |

Amplitude_Main cable 4 (kN) | 0.71 | 7.08 | 14.33 | 12.2 | 10.86 |

Location of max force | 1 | 1 | 4 | 4 | 4 |

**Table 7.**Mean values and amplitudes of the mooring forces on bridle ropes under different attack angles.

Attack Angle (°) | 0 | 22.5 | 45 | 67.5 | 90 |
---|---|---|---|---|---|

Mean value_Bridle rope 5 (kN) | - | 2.06 | 11.07 | 22.22 | 19.18 |

Amplitude_Bridle rope 5 (kN) | - | 1.76 | 6.70 | 7.39 | 5.42 |

Mean value_Bridle rope 6 (kN) | 22.29 | 31.59 | 25.25 | 9.82 | - |

Amplitude_Bridle rope 6 (kN) | 4.26 | 7.19 | 6.54 | 3.31 | - |

Mean value_Bridle rope 7 (kN) | 9.62 | 18.31 | 15.79 | 1.50 | - |

Amplitude_Bridle rope 7 (kN) | 0.72 | 3.82 | 2.99 | 1.29 | - |

Mean value_Bridle rope 8 (kN) | - | - | 8.09 | 16.21 | 15.47 |

Amplitude_Bridle rope 8 (kN) | - | - | 7.82 | 5.05 | 5.30 |

Mean value_Bridle rope 9 (kN) | - | 5.65 | 11.28 | 13.44 | 18.62 |

Amplitude_Bridle rope 9 (kN) | - | 2.59 | 2.66 | 5.07 | 6.18 |

Mean value_Bridle rope 10 (kN) | 6.00 | 15.98 | 25.06 | 12.05 | - |

Amplitude_Bridle rope 10 (kN) | 1.40 | 7.06 | 7.01 | 3.52 | - |

Location of max force | 6 | 6 | 6 | 5 | 5 |

**Table 8.**Mean values and amplitudes of the mooring forces on frame ropes under different attack angles.

Attack Angle (°) | 0 | 22.5 | 45 | 67.5 | 90 |
---|---|---|---|---|---|

Mean value_Frame rope 11(kN) | 12.68 | 9.32 | 2.77 | - | - |

Amplitude_Frame rope 11(kN) | 1.2 | 1.58 | 0.72 | - | - |

Mean value_Frame rope 12 (kN) | - | - | 1.97 | 4.16 | 3.38 |

Amplitude_Frame rope 12 (kN) | - | - | 1.03 | 1.35 | 0.94 |

Mean value_Frame rope 13 (kN) | 12.31 | 10.48 | - | - | - |

Amplitude_Frame rope 13 (kN) | 1.88 | 1.36 | - | - | - |

Mean value_Frame rope 14 (kN) | - | 4.29 | - | - | - |

Amplitude_Frame rope 14 (kN) | - | 3.23 | - | - | - |

Location of max force | 11 | 13 | 11 | 12 | 12 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Z.; Wang, S.; Guedes Soares, C.
Numerical Study on the Mooring Force in an Offshore Fish Cage Array. *J. Mar. Sci. Eng.* **2022**, *10*, 331.
https://doi.org/10.3390/jmse10030331

**AMA Style**

Liu Z, Wang S, Guedes Soares C.
Numerical Study on the Mooring Force in an Offshore Fish Cage Array. *Journal of Marine Science and Engineering*. 2022; 10(3):331.
https://doi.org/10.3390/jmse10030331

**Chicago/Turabian Style**

Liu, Zhongchi, Shan Wang, and C. Guedes Soares.
2022. "Numerical Study on the Mooring Force in an Offshore Fish Cage Array" *Journal of Marine Science and Engineering* 10, no. 3: 331.
https://doi.org/10.3390/jmse10030331