Buckling of a Composite Cylindrical Shell with Cantilever-like Boundary Conditions under Hydrostatic Pressure
Abstract
1. Introduction
2. Linearized Buckling Analytical Solution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, C.S. Design of submersible pressure hulls in composite materials. Mar. Struct. 1991, 4, 141–182. [Google Scholar] [CrossRef]
- Ross, C. A conceptual design of an underwater vehicle. Ocean. Eng. 2006, 33, 2087–2104. [Google Scholar] [CrossRef]
- Hajlaoui, A.; Dammak, F. A modified first shear deformation theory for three-dimensional thermal post-buckling analysis of FGM plates. Meccanica 2021, 56, 1–17. [Google Scholar] [CrossRef]
- Hajlaoui, A.; Chebbi, E.; Dammak, F. Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element. Int. J. Press. Vessel. Pip. 2021, 194, 104547. [Google Scholar] [CrossRef]
- Hajlaoui, A.; Wali, M.; Jdidia, M.B.; Dammak, F. An improved enhanced solid shell element for static and buckling analysis of shell structures. Mech. Ind. 2016, 17, 510. [Google Scholar] [CrossRef]
- Hajlaoui, A.; Jarraya, A.; Bikri, K.E.; Dammak, F. Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction. Compos. Struct. 2015, 132, 87–97. [Google Scholar] [CrossRef]
- Carvelli, V.; Panzeri, N.; Poggi, C. Buckling strength of GFRP under-water vehicles. Compos. Part B Eng. 2001, 32, 89–101. [Google Scholar] [CrossRef]
- Maali, M.; Bayrak, B.; Kiliç, M.; Sagiroglu, M.; Aydin, A.C. Buckling behavior of double-layered composite cylindrical shells. Int. J. Press. Vessel. Pip. 2021, 191, 104328. [Google Scholar] [CrossRef]
- Ouellette, P.; Hoa, S.V.; Sankar, T.S. Buckling of composite cylinders under external pressure. Polym. Compos. 1986, 7, 363–374. [Google Scholar] [CrossRef]
- Denardo, N.; Pinto, M.; Shukla, A. Hydrostatic and shock-initiated instabilities in double-hull composite cylinders. J. Mech. Phys. Solids 2018, 120, 96–116. [Google Scholar] [CrossRef]
- Gupta, S.; Matos, H.; LeBlanc, J.M.; Shukla, A. Shock initiated instabilities in underwater cylindrical structures. J. Mech. Phys. Solids 2016, 95, 188–212. [Google Scholar] [CrossRef]
- Hur, S.H.; Son, H.J.; Kweon, J.H.; Choi, J.H. Postbuckling of composite cylinders under external hydrostatic pressure. Compos. Struct. 2008, 86, 114–124. [Google Scholar] [CrossRef]
- Ross, C.T.F.; Little, A.P.F.; Haidar, Y.; Waheeb, A.A. Buckling of Carbon/Glass composite tubes under uniform external hydrostatic pressure. Strain 2011, 47, 156–174. [Google Scholar] [CrossRef]
- Moon, C.J.; Kim, I.H.; Choi, B.H.; Kweon, J.H.; Choi, J.H. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Compos. Struct. 2010, 92, 2241–2251. [Google Scholar] [CrossRef]
- Tang, W.X.; Zhang, S.; Zhang, J.; Tang, Z. Experimental study on the failure modes of circumferentially corrugated cylinders under external hydrostatic pressure. Thin-Walled Struct. 2020, 156, 106988. [Google Scholar] [CrossRef]
- Hernandez-Moreno, H.; Douchin, B.; Collombet, F.; Choqueuse, D.; Davies, P. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 2008, 68, 1015–1024. [Google Scholar] [CrossRef]
- Messager, T. Buckling of imperfect laminated cylinders under hydrostatic pressure. Compos. Struct. 2001, 53, 301–307. [Google Scholar] [CrossRef]
- Nguyen, H.; Elishakoff, I.; Nguyen, V.T. Buckling under the external pressure of cylindrical shells with variable thickness. Int. J. Solids Struct. 2009, 46, 4163–4168. [Google Scholar] [CrossRef]
- Cho, Y.S.; Oh, D.H.; Paik, J.K. An empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external pressure loads. Ocean. Eng. 2019, 172, 191–198. [Google Scholar] [CrossRef]
- Li, Z.; Duan, M.; An, C. An improved analytical solution for elastic and elastic-plastic buckling of pipes under hydrostatic pressures. Ocean. Eng. 2021, 230, 109009. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Ribeiro, M.L.; Tita, V.; Amico, S.C. Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches. Mater. Des. 2016, 96, 431–438. [Google Scholar] [CrossRef]
- Lopatin, A.V.; Morozov, E.V. Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure. Compos. Struct. 2017, 173, 136–143. [Google Scholar] [CrossRef]
- Lopatin, A.V.; Morozov, E.V. Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Compos. Struct. 2015, 122, 209–216. [Google Scholar] [CrossRef]
- Matos, H.; Kishore, S.; Salazar, C.; Shukla, A. Buckling, vibration, and energy solutions for underwater composite cylinders. Compos. Struct. 2020, 244, 112282. [Google Scholar] [CrossRef]
- Imran, M.; Shi, D.; Tong, L.; Elahi, A.; Uddin, M. On the elastic buckling of cross-ply composite closed cylindrical shell under hydrostatic pressure. Ocean. Eng. 2011, 227, 108633. [Google Scholar] [CrossRef]
- Hu, H.T.; Su, S.W. Optimization for buckling resistance of fiber-composite laminate shells with and without cutouts. Compos. Struct. 1992, 22, 3–13. [Google Scholar] [CrossRef]
- Abrate, S. Optimal design of laminated plates and shells. Compos. Struct. 1994, 29, 269–286. [Google Scholar] [CrossRef]
- Geier, B.; Meyer-Piening, H.-R.; Zimmermann, R. On the influence of laminate stacking on buckling of composite cylindrical shells subjected to axial compression. Compos. Struct. 2002, 55, 467–474. [Google Scholar] [CrossRef]
- Maalawi, K. Optimal buckling design of anisotropic rings/long cylinders under external pressure. J. Mech. Mater. Struct. 2008, 3, 775–793. [Google Scholar] [CrossRef][Green Version]
- Imran, M.; Shi, D.-Y.; Tong, L.-L.; Elahi, A.; Waqas, H.M.; Uddin, M. Multi-objective design optimization of composite submerged cylindrical pressure hull for minimum buoyancy factor and maximum buckling load capacity. Def. Technol. 2021, 17, 1190–1206. [Google Scholar] [CrossRef]
- Messager, T.; Pyrz, M.; Gineste, B.; Chauchot, P. Optimal laminations of thin underwater composite cylindrical vessels. Compos. Struct. 2002, 58, 529–537. [Google Scholar] [CrossRef]
- Shen, K.C.; Pan, G. Optimizing the buckling strength of filament winding composite cylinders under hydrostatic pressure. J. Reinf. Plast. Compos. 2018, 37, 892–904. [Google Scholar]
- Lee, G.C.; Kweon, J.H.; Choi, J.H. Optimization of composite sandwich cylinders for underwater vehicle application. Compos. Struct. 2013, 96, 691–697. [Google Scholar] [CrossRef]
- Shen, K.C.; Pan, G. Buckling and strain response of filament winding composite cylindrical shell subjected to hydrostatic pressure: Numerical solution and experiment. Compos. Struct. 2021, 276, 114534. [Google Scholar] [CrossRef]
- Vasiliev, V.V. Mechanics of Composite Structures; Taylor & Francis: Washington, DC, USA, 1993. [Google Scholar]
- Vasiliev, V.V.; Morozov, V.E. Advanced Mechanics of Composite Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Blevins, R.D. Formulas for Natural Frequency and Mode Shape; Krieger Publishing Company: Malabar, FL, USA, 2001. [Google Scholar]
ID | Stacking Sequence | Rinner/mm | t/mm | l/mm |
---|---|---|---|---|
NO.1 | [0/90]12T | 158 | 2.52 | 564 |
NO.2 | [0/90]12T | 158 | 2.52 | 600 |
Property | Symbol | Value | Unit |
---|---|---|---|
Elastic modulus | E11 | 162 | GPa |
E22 | 9.6 | GPa | |
Poisson’s ratio | v12 | 0.298 | |
Shear modulus | G12 | 6.1 | GPa |
Extensional stiffness | Value | Bending Stiffness | Value |
---|---|---|---|
A11 | 2.1736 × 108 | D11 | 115.0268 |
A12 | 7.2472 × 106 | D12 | 3.8352 |
A22 | 2.1736 × 108 | D22 | 115.0268 |
A66 | 1.5372 × 107 | D66 | 8.1349 |
Circumferential Wave Numbers n | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Instability pressure pn/MPa | NO.1 | 4.387 | 0.9498 | 0.6385 | 0.7652 | 10.337 |
NO.2 | 3.9212 | 0.8675 | 0.6144 | 0.7559 | 10.296 |
ID | Buckling Pressure/MPa and Buckling Mode | ||||
---|---|---|---|---|---|
Analytical Method (Deviation) | Finite Element Method (Deviation) | Experiment [12] | |||
NO.1 | 0.6385 (6.42%) | n = 4 | 0.7297 (21.62%) | n = 4 | 0.6 |
NO.2 | 0.6144(11.71%) | n = 4 | 0.6864 (24.80%) | n = 4 | 0.55 |
Buckling Pressure/Mpa and Buckling Mode n | |||||
---|---|---|---|---|---|
Analytical Method (Deviation) | Finite Element Method (Deviation) | Experiment | |||
3.297 (7.75%) | n = 3 | 3.02 (1.31%) | n = 3 | 3.06 | n = 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, K.-C.; Jiang, L.-L.; Yang, Z.-Q.; Pan, G. Buckling of a Composite Cylindrical Shell with Cantilever-like Boundary Conditions under Hydrostatic Pressure. J. Mar. Sci. Eng. 2022, 10, 126. https://doi.org/10.3390/jmse10020126
Shen K-C, Jiang L-L, Yang Z-Q, Pan G. Buckling of a Composite Cylindrical Shell with Cantilever-like Boundary Conditions under Hydrostatic Pressure. Journal of Marine Science and Engineering. 2022; 10(2):126. https://doi.org/10.3390/jmse10020126
Chicago/Turabian StyleShen, Ke-Chun, Lei-Lei Jiang, Zhao-Qi Yang, and Guang Pan. 2022. "Buckling of a Composite Cylindrical Shell with Cantilever-like Boundary Conditions under Hydrostatic Pressure" Journal of Marine Science and Engineering 10, no. 2: 126. https://doi.org/10.3390/jmse10020126
APA StyleShen, K.-C., Jiang, L.-L., Yang, Z.-Q., & Pan, G. (2022). Buckling of a Composite Cylindrical Shell with Cantilever-like Boundary Conditions under Hydrostatic Pressure. Journal of Marine Science and Engineering, 10(2), 126. https://doi.org/10.3390/jmse10020126