Marine Engines Performance and Emissions II
Conflicts of Interest
References
- Lamas Galdo, M.I. Marine Engines Performance and Emissions. J. Mar. Sci. Eng. 2021, 9, 280. [Google Scholar] [CrossRef]
- Puškár, M.; Kopas, M.; Sabadka, D.; Kliment, M.; Šoltésová, M. Reduction of the Gaseous Emissions in the Marine Diesel Engine Using Biodiesel Mixtures. J. Mar. Sci. Eng. 2020, 8, 330. [Google Scholar] [CrossRef]
- Sui, C.; de Vos, P.; Stapersma, D.; Visser, K.; Ding, Y. Fuel Consumption and Emissions of Ocean-Going Cargo Ship with Hybrid Propulsion and Different Fuels over Voyage. J. Mar. Sci. Eng. 2020, 8, 588. [Google Scholar] [CrossRef]
- Perez, J.R.; Reusser, C.A. Optimization of the Emissions Profile of a Marine Propulsion System Using a Shaft Generator with Optimum Tracking-Based Control Scheme. J. Mar. Sci. Eng. 2020, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Winnes, H.; Fridell, E.; Moldanová, J. Effects of Marine Exhaust Gas Scrubbers on Gas and Particle Emissions. J. Mar. Sci. Eng. 2020, 8, 299. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kong, K.-J. One-Dimensional Gas Flow Analysis of the Intake and Exhaust System of a Single Cylinder Diesel Engine. J. Mar. Sci. Eng. 2020, 8, 1036. [Google Scholar] [CrossRef]
- Lamas Galdo, M.I.; Castro-Santos, L.; Rodriguez Vidal, C.G. Numerical Analysis of NOx Reduction Using Ammonia Injection and Comparison with Water Injection. J. Mar. Sci. Eng. 2020, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, K. Research of the Effectiveness of Selected Methods of Reducing Toxic Exhaust Emissions of Marine Diesel Engines. J. Mar. Sci. Eng. 2020, 8, 452. [Google Scholar] [CrossRef]
- Lehtoranta, K.; Koponen, P.; Vesala, H.; Kallinen, K.; Maunula, T. Performance and Regeneration of Methane Oxidation Catalyst for LNG Ships. J. Mar. Sci. Eng. 2021, 9, 111. [Google Scholar] [CrossRef]
- Lamas, M.I.; Castro-Santos, L.; Rodriguez, C.G. Optimization of a Multiple Injection System in a Marine Diesel Engine through a Multiple-Criteria Decision-Making Approach. J. Mar. Sci. Eng. 2020, 8, 946. [Google Scholar] [CrossRef]
- Homišin, J.; Kaššay, P.; Urbanský, M.; Puškár, M.; Grega, R.; Krajňák, J. Electronic Constant Twist Angle Control System Suitable for Torsional Vibration Tuning of Propulsion Systems. J. Mar. Sci. Eng. 2020, 8, 721. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, J.; Yang, B.; Jia, B. Development of a Marine Two-Stroke Diesel Engine MVEM with In-Cylinder Pressure Trace Predictive Capability and a Novel Compressor Model. J. Mar. Sci. Eng. 2020, 8, 3020. [Google Scholar] [CrossRef] [Green Version]
- Píštěk, V.; Kučera, P.; Fomin, O.; Lovska, A. Effective Mistuning Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. J. Mar. Sci. Eng. 2020, 8, 379. [Google Scholar] [CrossRef]
- Markovič, J.; Živčák, J.; Sága, M.; Tarbajovský, P. New generation of the compact system for performing measurements of solid liquids by gas station dispensers. J. Mar. Sci. Eng. 2022, 10, 524. [Google Scholar] [CrossRef]
- Jírová, R.; Pešík, L.; Grega, R. An Original Vibrodiagnostic Device to Control Linear Rolling Conveyor Reliability. J. Mar. Sci. Eng. 2022, 10, 445. [Google Scholar] [CrossRef]
- Živčák, J.; Nováková-Marcinčínová, E.; Nováková-Marcinčínová, L.; Balint, T.; Puškár, M. Increasing Mechanical Properties of 3D Printed Samples by Direct Metal Laser Sintering Using Heat Treatment Process. J. Mar. Sci. Eng. 2021, 9, 821. [Google Scholar] [CrossRef]
- Varbanets, R.; Fomin, O.; Píštěk, V.; Klymenko, V.; Minchev, D.; Khrulev, A.; Zalozh, V.; Kučera, P. Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters. J. Mar. Sci. Eng. 2021, 9, 321. [Google Scholar] [CrossRef]
- Kao, S.-L.; Chung, W.-H.; Chen, C.-W. AIS-Based Scenario Simulation for the Control and Improvement of Ship Emissions in Ports. J. Mar. Sci. Eng. 2022, 10, 129. [Google Scholar] [CrossRef]
- Rodríguez, C.G.; Lamas, M.I.; Rodríguez, J.d.D.; Abbas, A. Possibilities of Ammonia as Both Fuel and NOx Reductant in Marine Engines: A Numerical Study. J. Mar. Sci. Eng. 2022, 10, 43. [Google Scholar] [CrossRef]
- Jablonický, J.; Feriancová, P.; Tulík, J.; Hujo, L.; Tkáč, Z.; Kuchar, P.; Tomić, M.; Kaszkowiak, J. Assessment of Technical and Ecological Parameters of a Diesel Engine in the Application of New Samples of Biofuels. J. Mar. Sci. Eng. 2022, 10, 1. [Google Scholar] [CrossRef]
- Ryu, M.-R.; Park, K. Analysis of Composite Scrubber with Built-In Silencer for Marine Engines. J. Mar. Sci. Eng. 2021, 9, 962. [Google Scholar] [CrossRef]
- Maláková, S.; Puškár, M.; Frankovský, P.; Sivák, S.; Harachová, D. Influence of the Shape of Gear Wheel Bodies in Marine Engines on the Gearing Deformation and Meshing Stiffness. J. Mar. Sci. Eng. 2021, 9, 1060. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas Galdo, M.I. Marine Engines Performance and Emissions II. J. Mar. Sci. Eng. 2022, 10, 1987. https://doi.org/10.3390/jmse10121987
Lamas Galdo MI. Marine Engines Performance and Emissions II. Journal of Marine Science and Engineering. 2022; 10(12):1987. https://doi.org/10.3390/jmse10121987
Chicago/Turabian StyleLamas Galdo, María Isabel. 2022. "Marine Engines Performance and Emissions II" Journal of Marine Science and Engineering 10, no. 12: 1987. https://doi.org/10.3390/jmse10121987
APA StyleLamas Galdo, M. I. (2022). Marine Engines Performance and Emissions II. Journal of Marine Science and Engineering, 10(12), 1987. https://doi.org/10.3390/jmse10121987