Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas
Abstract
:1. Introduction
2. Data Sources
3. Methodology
3.1. Framework
3.2. Kernel Density Estimation (KDE)
3.3. Zero-Inflated Negative Binomial (ZINB) Model
3.4. Elastic Analysis
4. Results and Discussion
4.1. Identification of Accident-Prone Areas
4.2. Zero-Inflated Negative Binomial Model and Elastic Analysis RESULTS and Their Theoretical Implications
4.3. Result Comparison between Two Accident-Prone Areas and Its Theoretical Implications
4.4. Implication for Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transport 2021; UNCTAD: Geneva, Switzerland, 2021. [Google Scholar]
- Carbone, V.; Martino, M.D. The changing role of ports in supply-chain management: An empirical analysis. Marit. Policy Manag. 2003, 30, 305–320. [Google Scholar] [CrossRef]
- Yip, T.L. Port traffic risks–A study of accidents in Hong Kong waters. Transp. Res. Part E: Logist. Transp. Rev. 2008, 44, 921–931. [Google Scholar] [CrossRef]
- Talley, W.K.; Jin, D.; Kite-Powell, H. Determinants of the severity of passenger vessel accidents. Marit. Policy Manag. 2006, 33, 173–186. [Google Scholar] [CrossRef]
- Jin, D. The determinants of fishing vessel accident severity. Accid. Anal. Prev. 2014, 66, 1–7. [Google Scholar] [CrossRef]
- Uğurlu, F.; Yıldız, S.; Boran, M.; Uğurlu, Ö.; Wang, J. Analysis of fishing vessel accidents with Bayesian network and Chi-square methods. Ocean. Eng. 2020, 198, 106956. [Google Scholar] [CrossRef]
- Roberts, S.E.; Jaremin, B.; Marlow, P.B. Human and fishing vessel losses in sea accidents in the UK fishing industry from 1948 to 2008. Int. Marit. Health 2010, 62, 143–153. [Google Scholar]
- Yip, T.L.; Jin, D.; Talley, W.K. Determinants of injuries in passenger vessel accidents. Accid. Anal. Prev. 2015, 82, 112–117. [Google Scholar] [CrossRef]
- Weng, J.; Ge, Y.E.; Han, H. Evaluation of shipping accident casualties using zero-inflated negative binomial regression technique. J. Navig. 2016, 69, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Ya-dong, Y.; Yong, M. Research on the Yangtze River accident casualties using zero-inflated negative binomial regression technique. In Proceedings of the 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 20–22 August 2016; pp. 72–75. [Google Scholar]
- Wang, J.; Zhou, Y.; Zhuang, L.; Shi, L.; Zhang, S. Study on the critical factors and hot spots of crude oil tanker accidents. Ocean. Coast. Manag. 2022, 217, 106010. [Google Scholar] [CrossRef]
- Weng, J.; Yang, D.; Qian, T.; Huang, Z. Combining zero-inflated negative binomial regression with MLRT techniques: An approach to evaluating shipping accident casualties. Ocean. Eng. 2018, 166, 135–144. [Google Scholar] [CrossRef]
- Wang, L.; Huang, R.; Shi, W.; Zhang, C. Domino effect in marine accidents: Evidence from temporal association rules. Transp. Policy 2021, 103, 236–244. [Google Scholar] [CrossRef]
- Weng, J.; Li, G. Exploring shipping accident contributory factors using association rules. J. Transp. Saf. Secur. 2019, 11, 36–57. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Wang, X.; Huang, D.; Cao, L.; Wang, J. Analysis of the injury-severity outcomes of maritime accidents using a zero-inflated ordered probit model. Ocean. Eng. 2022, 258, 111796. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, L.; Shu, Y.; Zhu, W. Evaluation model and management strategy for reducing pollution caused by ship collision in coastal waters. Ocean. Coast. Manag. 2021, 203, 105446. [Google Scholar] [CrossRef]
- Kamal, B.; Kutay, Ş. Assessment of causal mechanism of ship bunkering oil pollution. Ocean. Coast. Manag. 2021, 215, 105939. [Google Scholar] [CrossRef]
- Khan, R.U.; Yin, J.; Mustafa, F.S.; Anning, N. Risk assessment for berthing of hazardous cargo vessels using Bayesian networks. Ocean. Coast. Manag. 2021, 210, 105673. [Google Scholar] [CrossRef]
- Li, H.; Ren, X.; Yang, Z. Data-driven Bayesian network for risk analysis of global maritime accidents. Reliab. Eng. Syst. Saf. 2022, 230, 108938. [Google Scholar] [CrossRef]
- Liu, K.; Yu, Q.; Yuan, Z.; Yang, Z.; Shu, Y. A systematic analysis for maritime accidents causation in Chinese coastal waters using machine learning approaches. Ocean. Coast. Manag. 2021, 213, 105859. [Google Scholar] [CrossRef]
- Zhang, J.; Teixeira, Â.P.; Guedes Soares, C.; Yan, X.; Liu, K. Maritime transportation risk assessment of Tianjin Port with Bayesian belief networks. Risk Anal. 2016, 36, 1171–1187. [Google Scholar] [CrossRef]
- Çakir, E. Determinants of medical evacuations from merchant cargo ships: Evidence from Telemedical Assistance Service of Turkey data. Ocean. Coast. Manag. 2021, 211, 105797. [Google Scholar] [CrossRef]
- Chen, J.; Bian, W.; Wan, Z.; Wang, S.; Zheng, H.; Cheng, C. Factor assessment of marine casualties caused by total loss. Int. J. Disaster Risk Reduct. 2020, 47, 101560. [Google Scholar] [CrossRef]
- Weng, J.; Yang, D. Investigation of shipping accident injury severity and mortality. Accid. Anal. Prev. 2015, 76, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Yang, D.; Chai, T.; Fu, S. Investigation of occurrence likelihood of human errors in shipping operations. Ocean. Eng. 2019, 182, 28–37. [Google Scholar] [CrossRef]
- Ridout, M.; Hinde, J.; Demétrio, C.G. A score test for testing a zero—Inflated Poisson regression model against zero—Inflated negative binomial alternatives. Biometrics 2001, 57, 219–223. [Google Scholar] [CrossRef]
- Huang, D.-Z.; Hu, H.; Li, Y.-Z. Spatial analysis of maritime accidents using the geographic information system. Transp. Res. Rec. 2013, 2326, 39–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Chen, J.; Cheng, C. Spatial patterns and characteristics of global maritime accidents. Reliab. Eng. Syst. Saf. 2021, 206, 107310. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Liu, Z.; Wang, X.; Wang, J. GIS-based analysis on the spatial patterns of global maritime accidents. Ocean. Eng. 2022, 245, 110569. [Google Scholar] [CrossRef]
- van Westrenen, F.; Ellerbroek, J. The effect of traffic complexity on the development of near misses on the North Sea. IEEE Trans. Syst. Man Cybern. Syst. 2015, 47, 432–440. [Google Scholar] [CrossRef] [Green Version]
- MacDuff, T. The probability of vessel collisions. Ocean. Ind. 1974, 9, 144–148. [Google Scholar]
- Soussi, A.; Bersani, C.; Sacile, R.; Bouchta, D.; El Amarti, A.; Seghiouer, H.; Nachite, D.; Al Miys, J. Coastal risk modelling for oil spill in the Mediterranean Sea. Context 2020, 10, 25. [Google Scholar] [CrossRef]
- Otay, E.N.; Özkan, S. Stochastic Prediction of Maritime Accidents in the strait of Istanbul. In Proceedings of the 3rd International Conference on Oil Spills in the Mediterranean and Black Sea Regions, Istanbul, Turkey, 1 September 2003; pp. 92–104. [Google Scholar]
- ITF. International Transport Workers’ Federation. Available online: https://www.itfseafarers.org/foc-registries.cfm (accessed on 1 November 2022).
- Chen, J.; Zhang, W.; Li, S.; Zhang, F.; Zhu, Y.; Huang, X. Identifying critical factors of oil spill in the tanker shipping industry worldwide. J. Clean. Prod. 2018, 180, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Wang, X.; Graham, T.; Wang, J. An analysis of factors affecting the severity of marine accidents. Reliab. Eng. Syst. Saf. 2021, 210, 107513. [Google Scholar] [CrossRef]
- Chen, J.; Bian, W.; Wan, Z.; Yang, Z.; Zheng, H.; Wang, P. Identifying factors influencing total-loss marine accidents in the world: Analysis and evaluation based on ship types and sea regions. Ocean. Eng. 2019, 191, 106495. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z. Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China. Reliab. Eng. Syst. Saf. 2018, 180, 277–289. [Google Scholar] [CrossRef]
- Li, K.X.; Yin, J.; Fan, L. Ship safety index. Transp. Res. Part A Policy Pract. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Li, G.; Weng, J.; Wu, B.; Hou, Z. Incorporating multi-scenario underreporting rates into MICE for underreported maritime accident record analysis. Ocean. Eng. 2022, 246, 110620. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Yang, C.; Zhang, C.; Luo, L. Factor and trend analysis of total-loss marine casualty using a fuzzy matter element method. Int. J. Disaster Risk Reduct. 2017, 24, 383–390. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, S.; Zhuang, L.; Shi, L.; Chen, J.; Hu, D. Societal risk acceptance criteria of the global general cargo ships. Ocean. Eng. 2022, 261, 112162. [Google Scholar] [CrossRef]
- Fu, S.; Yu, Y.; Chen, J.; Han, B.; Wu, Z. Towards a probabilistic approach for risk analysis of nuclear-powered icebreakers using FMEA and FRAM. Ocean. Eng. 2022, 260, 112041. [Google Scholar] [CrossRef]
- Zhang, J.; Teixeira, Â.P.; Soares, C.G.; Yan, X. Quantitative assessment of collision risk influence factors in the Tianjin port. Saf. Sci. 2018, 110, 363–371. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, X.; Yang, Z.L.; Wall, A.; Wang, J. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River. Reliab. Eng. Syst. Saf. 2013, 118, 93–105. [Google Scholar] [CrossRef]
- Knapp, S.; Bijwaard, G.; Heij, C. Estimated incident cost savings in shipping due to inspections. Accid. Anal. Prev. 2011, 43, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Balmat, J.-F.; Lafont, F.; Maifret, R.; Pessel, N. MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor. Ocean. Eng. 2009, 36, 1278–1286. [Google Scholar] [CrossRef]
- Jones, M.C.; Marron, J.S.; Sheather, S.J. A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 1996, 91, 401–407. [Google Scholar] [CrossRef]
- Park, B.U.; Marron, J.S. Comparison of data-driven bandwidth selectors. J. Am. Stat. Assoc. 1990, 85, 66–72. [Google Scholar] [CrossRef]
- Nicholson, A. Analysis of spatial distributions of accidents. Saf. Sci. 1998, 31, 71–91. [Google Scholar] [CrossRef]
- Dobbins, J.P.; Jenkins, L.M. Geographic information systems for estimating coastal maritime risk. Transp. Res. Rec. 2011, 2222, 17–24. [Google Scholar] [CrossRef]
- Ugurlu, O.; Yildirim, U.; Yuksekyildiz, E. Marine accident analysis with GIS. J. Shipp. Ocean. Eng. 2013, 3, 21. [Google Scholar]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression models for count data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Chen, J.; Liu, X. Optimal collision-avoidance manoeuvres to minimise bunker consumption under the two-ship crossing situation. J. Navig. 2018, 71, 151–168. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, H.; Wei, L.; Wan, Z.; Ren, R.; Li, J.; Li, H.; Bian, W.; Gao, M.; Bai, Y. Factor diagnosis and future governance of dangerous goods accidents in China’s ports. Env. Pollut. 2020, 257, 113582. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yu, Y.; Chen, J.; Xi, Y.; Zhang, M. A framework for quantitative analysis of the causation of grounding accidents in arctic shipping. Reliab. Eng. Syst. Saf. 2022, 226, 108706. [Google Scholar] [CrossRef]
- Ma, X.; Deng, W.; Qiao, W.; Lan, H. A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN. Reliab. Eng. Syst. Saf. 2022, 221, 108334. [Google Scholar] [CrossRef]
- Kum, S.; Sahin, B. A root cause analysis for Arctic Marine accidents from 1993 to 2011. Saf. Sci. 2015, 74, 206–220. [Google Scholar] [CrossRef]
- Harmonization of GMDSS Requirements for Radio Installations on Board SOLAS Ships; IMO: London, UK, 2004.
- C/S. Cospas-Sarsat System Data No 46; COSPAS-SARSAT: Montreal, QC, Canada, 2020. [Google Scholar]
- Zhang, W.; Li, C.; Chen, J.; Wan, Z.; Shu, Y.; Song, L.; Xu, L.; Di, Z. Governance of global vessel-source marine oil spills: Characteristics and refreshed strategies. Ocean. Coast. Manag. 2021, 213, 105874. [Google Scholar] [CrossRef]
- Chen, J.; Di, Z.; Shi, J.; Shu, Y.; Wan, Z.; Song, L.; Zhang, W. Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. J. Clean. Prod. 2020, 273, 122978. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Wan, Z.; Li, S.; Huang, T.; Fei, Y. Oil spills from global tankers: Status review and future governance. J. Clean. Prod. 2019, 227, 20–32. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Han, J.; Li, Y. Tracing illegal oil discharges from vessels using SAR and AIS in Bohai Sea of China. Ocean. Coast. Manag. 2021, 211, 105783. [Google Scholar] [CrossRef]
Independent Variable | Related Literature |
---|---|
Accident type | Weng, Ge and Han [9], Uğurlu, Yıldız, Boran, Uğurlu and Wang [6], Chen, et al. [35], Hao, Ya-dong and Yong [10], H. Wang, Liu, Wang, Huang, Cao and Wang [15], Yip [3], Weng and Yang [24], Wang, et al. [36], Chen, et al. [37], Wang and Yang [38], Li, et al. [39], Li, et al. [40], Chen, et al. [41], Chen, Bian, Wan, Wang, Zheng and Cheng [23], J. Wang, et al. [42], Fu, et al. [43] |
Accident location | Hao, Ya-dong and Yong [10], Wang, Liu, Wang, Huang, Cao and Wang [15], Yip [3], Weng and Yang [24], Wang, Liu, Wang, Graham and Wang [36], Wang, Liu, Wang, Huang, Cao and Wang [15], Wang and Yang [38], Zhang, et al. [44] |
Vessel type | Weng, Ge and Han [9], Weng and Yang [24], Wang, Liu, Wang, Graham and Wang [36], Wang and Yang [38], Zhang, Teixeira, Soares and Yan [44] |
Ship age | Uğurlu, Yıldız, Boran, Uğurlu and Wang [6], Wang, Liu, Wang, Graham and Wang [36], Wang, Liu, Wang, Huang, Cao and Wang [15], Wang and Yang [38], Zhang, et al. [45] |
Flag | Wang, Liu, Wang, Huang, Cao and Wang [15], Knapp, et al. [46], Balmat, et al. [47] |
Variable Type | Variable Name | Variable Value Assignment |
---|---|---|
Dependent variable | Total | Preserving the original value; |
Independent variable | Flag | Flag of convenience—1; Non-flag of convenience—0; |
Vessel type | Passenger liner—1; Other—0; | |
Loss type | Total loss—1; Other—0; | |
Pollution indicator | Pollution caused—1; No pollution caused—0; | |
Serious indicator | Serious—1; Not serious—0 | |
Ship age | [0, 10)—1; [10, +∞)—0; | |
Whether in port | Accident happening in port—1; Accident happening outside port—0; | |
Machinery damage | Mechanical failure/fault—1; Other—0; | |
Collision | Collision—1; Other—0; | |
Grounding | Grounding—1; Other—0; | |
Fire/explosion | Fire/explosion—1; Other—0; | |
Contact | Contact-caused damage—1; Other—0; | |
Foundered | Foundered—1; Other—0; | |
Hull damage | Hull damage—1; Other—0; |
Poisson | Negative Binomial (NB) | Zero-Inflated Negative Binomial (ZINB) | Zero-Inflated Poisson (ZIP) | |||||
---|---|---|---|---|---|---|---|---|
Sea Area I | Sea Area II | Sea Area I | Sea Area II | Sea Area I | Sea Area II | Sea Area I | Sea Area II | |
AIC | 3457.697 | 4853.596 | 1916.581 | 1879.244 | 1801.815 | 1750.121 | 1895.740 | 2361.192 |
BIC | 3561.779 | 4955.755 | 2027.602 | 1988.214 | 2016.918 | 1961.250 | 2103.903 | 2565.511 |
Variable | Regression Coefficient | Standard Error | -Value | |||
---|---|---|---|---|---|---|
Sea Area I | Sea Area II | Sea Area I | Sea Area II | Sea Area I | Sea Area II | |
Flag | 0.451 | 0.497 | 0.256 | 0.223 | 0.078 | 0.026 |
Vessel type | 0.409 | 0.682 | 0.205 | 0.334 | 0.046 | 0.041 |
Loss type | 2.246 | 6.301 | 0.513 | 1.568 | <0.001 | <0.001 |
Pollution indicator | −2.500 | −3.102 | 1.071 | 1.270 | 0.020 | 0.015 |
Serious indicator | 0.728 | 0.944 | 0.251 | 0.350 | 0.004 | 0.007 |
Ship age | 0.321 | 0.240 | 0.074 | 0.115 | <0.001 | 0.037 |
Whether in port | −0.914 | −1.736 | 0.101 | 0.392 | <0.001 | <0.001 |
Machinery damage | 0.881 | 2.208 | 0.332 | 0.561 | 0.008 | <0.001 |
Collision | 2.618 | 2.396 | 0.443 | 0.524 | <0.001 | <0.001 |
Grounding | 2.139 | 1.200 | 0.407 | 0.592 | <0.001 | 0.043 |
Fire/explosion | 1.963 | 1.699 | 0.538 | 0.819 | <0.001 | 0.038 |
Contact | 1.629 | 2.020 | 0.443 | 0.598 | <0.001 | <0.001 |
Foundered | 2.938 | 4.183 | 0.401 | 1.282 | <0.001 | 0.001 |
Hull damage | 0.749 | 1.603 | 1.032 | 0.844 | 0.468 | 0.058 |
Variable | Elastic Coefficient | Absolute Value of Elasticity Coefficient | ||
---|---|---|---|---|
Sea Area I | Sea Area II | Sea Area I | Sea Area II | |
Flag | 0.131 | 0.180 | 0.131 | 0.180 |
Vessel type | 0.037 | 0.083 | 0.037 | 0.083 |
Loss type | 0.059 | 0.233 | 0.059 | 0.233 |
Pollution indicator | −0.044 | −0.101 | 0.044 | 0.101 |
Serious indicator | 0.277 | 0.334 | 0.277 | 0.334 |
Ship age | 1.008 | 0.973 | 1.008 | 0.973 |
Whether in port | −0.207 | −0.578 | 0.207 | 0.578 |
Machinery damage | 0.064 | 0.107 | 0.064 | 0.107 |
Collision | 1.178 | 1.102 | 1.178 | 1.102 |
Grounding | 0.261 | 0.172 | 0.261 | 0.172 |
Fire/explosion | 0.201 | 0.225 | 0.201 | 0.225 |
Contact | 0.133 | 0.138 | 0.133 | 0.138 |
Foundered | 0.049 | 0.070 | 0.049 | 0.070 |
Hull damage | 0.018 | 0.033 | 0.018 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhai, Y.; Chen, J.; Xu, Q.; Fu, S.; Wang, H. Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas. J. Mar. Sci. Eng. 2022, 10, 1945. https://doi.org/10.3390/jmse10121945
Zhang Y, Zhai Y, Chen J, Xu Q, Fu S, Wang H. Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas. Journal of Marine Science and Engineering. 2022; 10(12):1945. https://doi.org/10.3390/jmse10121945
Chicago/Turabian StyleZhang, Yang, Yujia Zhai, Jihong Chen, Qingjun Xu, Shanshan Fu, and Huizhen Wang. 2022. "Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas" Journal of Marine Science and Engineering 10, no. 12: 1945. https://doi.org/10.3390/jmse10121945