Configuration Analysis of Factors Influencing Port Competitiveness of Hinterland Cities under TOE Framework: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Model
2.1. Port Competitiveness
2.2. Hinterland Cities and Port Competitiveness
2.3. TOE Frame and Configuration Model
3. Materials and Methods
3.1. fsQCA Method
3.2. Samples Selection and Data Source
3.2.1. Results of Variables
3.2.2. Condition Variables
3.3. Calibration
4. Results
4.1. Necessary Conditions and Configuration of Conditions
4.2. Analysis of Configurations of Conditions of High Port Competitiveness
4.3. Configuration Analysis of Low Port Competitiveness Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Configurations | Raw Coverage | Unique Coverage | Consistency | |
---|---|---|---|---|
Configuration Solution for High Port Competitiveness | ||||
Complex Solution | ~IN*FS*IS*MO*ED | 0.353 | 0.179 | 0.909 |
IN*IC*FS*IS*ED | 0.314 | 0.046 | 0.853 | |
IN*IC*FS*MO*ED | 0.338 | 0.069 | 0.834 | |
solution coverage: 0.562 solution consistency: 0.861 | ||||
Parsimonious Solution | FS*MO*ED | 0.536 | 0.089 | 0.805 |
FS*IS | 0.528 | 0.080 | 0.864 | |
solution coverage: 0.617 solution consistency: 0.812 | ||||
Intermediate Solution | ~IN*FS*IS*MO*ED | 0.353 | 0.179 | 0.909 |
IN*IC*FS*IS*ED | 0.314 | 0.046 | 0.853 | |
IN*IC*FS*MO*ED | 0.338 | 0.069 | 0.834 | |
solution coverage: 0.562 solution consistency: 0.861 | ||||
Configuration Solution for Low Port Competitiveness | ||||
Complex Solution | ~IN*IC*~FS*~MO*~ED | 0.298 | 0.126 | 0.974 |
IN*~IC*~FS*IS*~MO*~ED | 0.253 | 0.069 | 0.952 | |
~IN*~IC*~FS*IS*MO*~ED | 0.226 | 0.062 | 0.943 | |
IN*~IC*FS*~IS*MO*~ED | 0.243 | 0.067 | 0.936 | |
solution coverage: 0.557 solution consistency: 0.942 | ||||
Parsimonious Solution | IC*~FS | 0.419 | 0.069 | 0.816 |
~FS*IS | 0.458 | 0.127 | 0.767 | |
~IC*FS*~IS | 0.325 | 0.061 | 0.881 | |
solution coverage: 0.633 solution consistency: 0.799 | ||||
Intermediate Solution | ~IN*IC*~FS*~MO*~ED | 0.298 | 0.126 | 0.974 |
IN*~IC*~FS*IS*~MO*~ED | 0.253 | 0.069 | 0.952 | |
~IN*~IC*~FS*IS*MO*~ED | 0.226 | 0.062 | 0.943 | |
IN*~IC*FS*~IS*MO*~ED | 0.243 | 0.067 | 0.936 | |
solution coverage: 0.557 solution consistency: 0.942 |
References
- Zhang, M. Research on the Relationship between Port Prosperity and Regional Economic Development—Empirical Analysis based on Panel Vector Autoregressive Model. World Surv. Res. 2012, 9, 58–64. [Google Scholar]
- Liu, M.Q.; Wu, Y.R. Zhanjiang port throughput, economic growth and residents’ income improvement-a short-term dynamic analysis based on VAR model. Guangdong Econ. 2020, 10, 80–89. [Google Scholar]
- Wang, J.; Huang, K. Research on the correlation between industrial structure, economic growth and port logistics development-take Fujian Province as an example. J. Dalian Marit. Univ. (Soc. Sci. Ed.) 2021, 20, 78–87. [Google Scholar]
- Ni, Y.B. Influence of Ningbo Zhoushan port on regional economy. China Ports 2021, 8, 11–13. [Google Scholar]
- Liu, L.; Yin, F. Spatial Spillover Effects of Ports on Economic Growth of Hinterland Cities. J. Transp. Syst. Eng. Inf. Technol. 2020, 20, 144–149. [Google Scholar]
- Lu, B.; Xing, J.; Wang, Q.; Wang, S. Analysis of cooperation mechanism between port competitiveness and hinterland by panel data. Syst. Eng.-Theory Pract. 2019, 39, 1079–1090. [Google Scholar]
- Meng, F.R.; Gao, X.L. Research on Coupling Coordination Degree of Port and Direct Hinterland Economy and its Influencing Factors: A Case Study of Beibu Gulf Rim Port Group. Geogr. Geo-Inf. Sci. 2017, 33, 94–100. [Google Scholar]
- Zhang, H. The influence of Tianjin Free Trade Zone on the coordinated development of Hebei Port and hinterland industries. Rev. Econ. Res. 2016, 33, 19–22. [Google Scholar]
- Du, Y.Z.; Jia, L.D. Configuration perspective and qualitative comparative analysis (QCA): A new way of management research. Manag. World 2017, 6, 155–167. [Google Scholar]
- Hales, D.; Chang, Y.T.; Lam, J. The Balanced Theory of port competitiveness. Transp. J. 2016, 55, 168–189. [Google Scholar] [CrossRef]
- He, T.X.; Chen, X.H. Empirical analysis of dynamic externalities and growth convergence among urban agglomeration. Syst. Eng. Theory Pract. 2017, 37, 2791–2801. [Google Scholar]
- Huang, H.; Mo, D.X.; Cheng, W.J. Evaluation on Competitiveness of Green Port Based on Analytical Network Process. J. Technol. Econ. 2017, 36, 117–122. [Google Scholar]
- Kuang, H.B.; Chen, S.W. The Research on Port Overall Competitiveness Model. Sci. Sci. Manag. S. T 2007, 10, 157–162. [Google Scholar]
- Pan, J.; Yang, S.; Shen, F.Y. Construction and simulation of port city coupled system model based on systems dynamics: Taking Lianyungang as a case. Syst. Eng. Theory Pract. 2012, 32, 2439–2446. [Google Scholar]
- Zhao, Q.Y.; Xu, H.; Wall, R.S.; Stavropoulos, S. Building a bridge between port and city: Improving the urban competitiveness of port cities. J. Transp. Geogr. 2017, 59, 120–133. [Google Scholar] [CrossRef]
- Xie, L.X.; Zhu, Y.Q.; Tian, C. Competitiveness Evaluation and Development Suggestions for Ports Based on Evidence Theory. J. Chongqing Jiaotong Univ. (Nat. Sci.) 2021, 40, 1–6. [Google Scholar]
- Liu, C.L.; Zhuang, H.L.; Zhang, Q.S. Competitiveness Evaluation of Cruise Ports around Bohai Sea Based on Entropy Weight-Cloud Model. J. Chongqing Jiaotong Univ. (Nat. Sci.) 2021, 21, 8–15. [Google Scholar]
- Zhang, Y.; Huang, J.; Ding, W.T.; Wang, W.Y. Evaluation Method of Port Competitiveness Considering Different Cargo Types Based on Combinatorial Weighted-TOPSIS Method. Sci. Technol. Eng. 2021, 21, 12294–12298. [Google Scholar]
- Wilmsmeier, G.; Monios, J.; Rodrigue, J. Drivers for Outside-In port hinterland integration in Latin America: The case of Veracruz, Mexico. Res. Transp. Bus. Manag. 2015, 14, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.X.; Tian, G.L.; Wang, Y. An Empirical Analysis of Harbor on Hinterland Regional Based on VAR Model: A Case Study of Lianyungang Harbor. Manag. Rev. 2016, 28, 250–259. [Google Scholar]
- Li, P.; Liu, Z. Literature Review on Port-Hinterland Economic Integration and Suggestions for Future Research. J. Guangxi Univ. Financ. Econ. 2018, 31, 112–123. [Google Scholar]
- Wang, S.G. Regional perspective of Port Development. Econ. Geogr. 1993, 1, 33–37. [Google Scholar]
- Cheung, S.; Yip, T.L. Port City Factors and Port Production: Analysis of Chinese Ports. Transp. J. 2011, 50, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Li, D.S.; Niu, Z.Y.; Wu, C.W. Research on the Impact of Industrial Restructuring on Port Development: A Case Study of the Port of Tangshan. Geogr. Geo-Inf. Sci. 2019, 35, 117–122. [Google Scholar]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation; Lexington Books: Lexington, KA, USA, 1990. [Google Scholar]
- Chau, K.; Tam, Y. Factors Affecting the Adoption of Open Systems: An Exploratory Study. MIS Q. 1997, 21, 1–24. [Google Scholar] [CrossRef]
- Walker, R.M. Internal and External Antecedents of Process Innovation: A Review and Extension. Public Manag. Rev. 2014, 16, 21–44. [Google Scholar] [CrossRef]
- Oliveir, T.; Martins, M.F. Literature Review of Information Technology Adoption Models at Firm Level. Electron. J. Inf. Syst. Eval. 2011, 14, 312–323. [Google Scholar]
- Zhao, Y.; Wang, L.; Feng, T.; Zhang, X. A research on the differentiated paths adopted by governments for resumption of work and production in the context of COVID-19. Sci. Res. Manag. 2021, 42, 191–200. [Google Scholar]
- Zhao, Y.; Lai, W.Y. Analysis of the Influencing Factors of Chinas Industrial Internet Implementation Capabilities Based on TOE Theory. Mod. Manag. 2021, 41, 25–28. [Google Scholar]
- Liu, S.Y.; Wang, H.P. Research on Performance Evaluation and Path Generation of Local Government Data Open System under TOE Framework: Qualitative Comparative Analysis of Fuzzy Sets Based on Data from 20 Provinces. Chin. Public Adm. 2021, 9, 34–41. [Google Scholar]
- Zhang, Q.; Ru, S.F. Research on the Path of New Digital Infrastructure to Promote Virtual Agglomeration of Modern Service Industry. Inq. Into Econ. Issues 2021, 7, 123–135. [Google Scholar]
- Zhang, H.P.; Song, Y.Q. Research on Paths of Improving Data Collaborative Governance for Government Services: Configuration Analysis Based on TOE Framework. J. Intell. 2020, 39, 151–157. [Google Scholar]
- Guo, C.X.; Wang, J.Q.; Liu, H.R. Studies on How New Infrastructure Empowers High-quality Development of China’s Economy. J. Beijing Univ. Technol. (Soc. Sci. Ed.) 2020, 20, 13–21. [Google Scholar]
- Xu, K. How can the new infrastructure enable the construction of Shanghai international shipping center? China Ship Surv. 2020, 7, 23–24. [Google Scholar]
- Mergel, I.; Desouza, K.C. Implementing Open Innovation in the Public Sector: The Case of Challenge.gov. Public Manag. Rev. 2013, 73, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Lu, F. The Product Development Platforms. Manag. World 2018, 34, 106–129. [Google Scholar]
- Feng, Y.Q.; Qiu, J.J. The efficiency and heterogeneousness of upgrading industrial structure under science and technology financial policy: A quasi-natural experiment base on the pilot of combining science and technology with finance. Ind. Econ. Res. 2021, 2, 128–142. [Google Scholar]
- Qi, X.L.; Guo, P.Z.; Liang, Y.Y. Mechanism and empirical test of government support to improve regional innovation performance. Financ. Account. Mon. 2021, 4, 126–134. [Google Scholar]
- Wang, L.H.; Su, H.; Zhang, S. Industrial Transformation and Spatial Governance of Port Cities: Comparison between Hamburg, Germany and Shanghai, China. Urban Plan. Forum 2021, 2, 45–52. [Google Scholar]
- Wang, J.; Deng, Y. Relationship of Coupling Coordination Between Port Logistics and Direct Hinterland Economy: A Case Study on Nine Seaport-type National Logistics Hubs Like Tianjin Port and Yingkou Port. J. Ind. Technol. Econ. 2020, 39, 62–68. [Google Scholar]
- Chen, M.B. Factor Flow, Resource Integration and Open Cooperation: Understanding the Role of Marine Economy in the Construction of Guangdong-Hong Kong-Macao Bay Area. J. South China Norm. Univ. (Soc. Sci. Ed.) 2018, 2, 21–26. [Google Scholar]
- Zhang, M.L.; Li, B.Z.; Yin, S. Configurational paths to regional innovation performance: The interplay of innovation elements based on a fuzzy-set qualitative comparative analysis approach. Technol. Anal. Strateg. Manag. 2020, 32, 1422–1435. [Google Scholar] [CrossRef]
- Xu, D.; Liu, X. Impact of infrastructure on the real exchange rate: Evidence from China’s provincial data by spatial dubin model. World Econ. Stud. 2022, 3, 33–53. [Google Scholar]
- Gao, Y.J.; Wu, H.C. A study on the effect of innovative actors and their interaction on regional innovation capacity. Sci. Res. Manag. 2015, 36, 51–57. [Google Scholar]
- Eisingerich, A.B.; Bell, S.J.; Tracey, P. How can clusters sustain performance? The role of network strength, network openness, and environmental uncertainty. Res. Policy 2010, 39, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Ragin, C.C.; Fiss, P.C. Net Effects Analysis versus Configurational Analysis: An Empirical Demonstration. In Redesining Social Inquiry: Fuzzy Set and Beyond; Ragin, C.C., Ed.; University of Chicago Press: Chicago, IL, USA, 2008; pp. 190–212. [Google Scholar]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Patala, S.; Juntunen, J.K.; Lundan, S.; Ritvala, T. Multinational energy utilities in the energy transition: A configurational study of the drivers of FDI in renewables. J. Int. Bus. Stud. 2021, 52, 930–950. [Google Scholar] [CrossRef]
Measure | Name | Abbreviation |
---|---|---|
Outcome | Port Competitiveness | PC |
Conditions | Infrastructure | IN |
Innovation Capability | IC | |
Industrial Structure | IS | |
Financial Supply | FS | |
Economic Development | ED | |
Market Openness | MO |
Cities | PC | IN | IC | FS | IS | MO | ED |
---|---|---|---|---|---|---|---|
Ningbo-Zhoushan | 112,009 | 7.042298049 | 71.68102039 | 1.819688215 | 0.457197336 | 1.321401784 | 228,828 |
Shenzhen | 25,785 | 4.108554233 | 141.359961 | 3.667456878 | 0.586183768 | 1.248372098 | 183,127 |
Guangzhou | 60,616 | 4.083091927 | 81.61728191 | 1.507745682 | 0.709401646 | 0.451764509 | 150,678 |
Shanghai | 66,351 | 2.996530664 | 54.47809025 | 3.121004991 | 0.68970487 | 2.628650959 | 124,600 |
Weihai | 3730 | 10.411594 | 29.46630804 | 1.272508494 | 0.478184535 | 0.40369817 | 123,163 |
Tianjin | 49,220 | 7.241895598 | 55.88135169 | 2.108178589 | 0.580076342 | 0.41122311 | 119,441 |
Qingdao | 57,736 | 8.371024164 | 58.48016791 | 1.510144772 | 0.553587478 | 0.45604533 | 119,357 |
Xiamen | 21,344 | 5.938802993 | 61.34413965 | 2.024663342 | 0.577321554 | 1.336658102 | 109,740 |
Dalian | 36,641 | 2.365535995 | 19.72806641 | 1.316444826 | 0.520688765 | 0.561142873 | 105,378 |
Yantai | 38,632 | 7.890992186 | 16.90693148 | 0.998772816 | 0.43394491 | 0.419351542 | 103,706 |
Fuzhou | 21,255 | 7.602336815 | 33.39425587 | 1.228224543 | 0.509795862 | 0.328832126 | 93,290 |
Fangcheng | 10,141 | 7.15560519 | 10.7636673 | 1.281323123 | 0.311642081 | 1.036298913 | 79,351 |
Taizhou | 4901 | 4.116149068 | 45.88264139 | 0.920398823 | 0.497146907 | 0.359574041 | 72,912 |
Rizhao | 46,377 | 5.798731356 | 9.477112978 | 0.796434082 | 0.443881857 | 0.454183207 | 68,848 |
Haikou | 12,447 | 6.229919458 | 14.05307865 | 0.873641125 | 0.772783499 | 0.151185202 | 61,583 |
Wenzhou | 7541 | 4.534454693 | 49.91861096 | 0.826478568 | 0.579457933 | 0.243361696 | 59,306 |
Lianyungang | 23,456 | 5.762283109 | 20.2151204 | 0.864376771 | 0.434430048 | 0.195317974 | 58,577 |
Yingkou | 23,818 | 1.886382281 | 4.799015587 | 0.852337982 | 0.480090041 | 0.289839323 | 52,821 |
Qinhuangdao | 21,880 | 2.807605761 | 15.53619648 | 0.381091681 | 1.013067933 | 0.436272866 | 48,539 |
Shantou | 3155 | 3.577618487 | 25.78902322 | 0.591883314 | 0.451509299 | 0.236281033 | 42,025 |
Zhanjiang | 21,570 | 2.247132101 | 9.392197125 | 0.616413415 | 0.426351703 | 0.122392468 | 38,744 |
Outcome and Conditions | Calibration Points | ||
---|---|---|---|
Complete Membership | Intersection | Complete Nonmembership | |
PC | 66,351 | 23,456 | 3730 |
IN | 8.37 | 5.76 | 2.25 |
IC | 81.62 | 29.47 | 9.39 |
IS | 3.12 | 1.23 | 0.59 |
FS | 0.77 | 0.51 | 0.43 |
ED | 183,127 | 93,290 | 42,025 |
MO | 1.34 | 0.42 | 0.15 |
Cities | PC | IN | IC | FS | IS | MO | ED |
---|---|---|---|---|---|---|---|
Ningbo-Zhoushan | 1 | 0.81 | 0.92 | 0.72 | 0.13 | 0.95 | 0.99 |
Shenzhen | 0.54 | 0.2 | 1 | 0.98 | 0.71 | 0.94 | 0.95 |
Guangzhou | 0.93 | 0.19 | 0.95 | 0.61 | 0.91 | 0.53 | 0.87 |
Shanghai | 0.95 | 0.09 | 0.81 | 0.95 | 0.89 | 1 | 0.74 |
Weihai | 0.05 | 1 | 0.501 | 0.52 | 0.24 | 0.46 | 0.73 |
Tianjin | 0.86 | 0.85 | 0.82 | 0.8 | 0.69 | 0.48 | 0.71 |
Qingdao | 0.92 | 0.95 | 0.84 | 0.61 | 0.62 | 0.53 | 0.7 |
Xiamen | 0.42 | 0.55 | 0.86 | 0.78 | 0.68 | 0.95 | 0.63 |
Dalian | 0.72 | 0.05 | 0.19 | 0.53 | 0.53 | 0.61 | 0.6 |
Yantai | 0.74 | 0.92 | 0.13 | 0.25 | 0.06 | 0.501 | 0.59 |
Fuzhou | 0.42 | 0.89 | 0.56 | 0.501 | 0.501 | 0.27 | 0.501 |
Fangcheng | 0.12 | 0.83 | 0.06 | 0.52 | 0 | 0.88 | 0.31 |
Taizhou | 0.06 | 0.2 | 0.72 | 0.19 | 0.39 | 0.34 | 0.23 |
Rizhao | 0.83 | 0.51 | 0.05 | 0.12 | 0.09 | 0.53 | 0.19 |
Haikou | 0.16 | 0.63 | 0.09 | 0.16 | 0.95 | 0.05 | 0.14 |
Wenzhou | 0.08 | 0.26 | 0.76 | 0.13 | 0.69 | 0.12 | 0.12 |
Lianyungang | 0.501 | 0.501 | 0.2 | 0.15 | 0.06 | 0.08 | 0.12 |
Yingkou | 0.51 | 0.04 | 0.02 | 0.15 | 0.26 | 0.19 | 0.09 |
Qinhuangdao | 0.44 | 0.07 | 0.11 | 0.02 | 1 | 0.51 | 0.07 |
Shantou | 0.04 | 0.13 | 0.37 | 0.05 | 0.11 | 0.11 | 0.05 |
Zhanjiang | 0.43 | 0.05 | 0.05 | 0.05 | 0.05 | 0.03 | 0.04 |
Conditions | High Port Competitiveness | Low Port Competitiveness | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
IN | 0.594 | 0.655 | 0.565 | 0.598 |
~IN | 0.635 | 0.604 | 0.674 | 0.614 |
IC | 0.637 | 0.682 | 0.505 | 0.519 |
~IC | 0.550 | 0.537 | 0.690 | 0.646 |
FS | 0.639 | 0.779 | 0.435 | 0.509 |
~FS | 0.597 | 0.524 | 0.811 | 0.683 |
IS | 0.606 | 0.680 | 0.536 | 0.576 |
~IS | 0.622 | 0.583 | 0.702 | 0.631 |
ED | 0.707 | 0.809 | 0.437 | 0.480 |
~ED | 0.545 | 0.502 | 0.826 | 0.730 |
MO | 0.695 | 0.741 | 0.499 | 0.510 |
~MO | 0.540 | 0.529 | 0.746 | 0.701 |
Condition | Configurations of High Port Competitiveness | Configurations of Low Port Competitiveness | |||||
---|---|---|---|---|---|---|---|
C1 | C2 | C3 | NC1 | NC2 | NC3 | NC4 | |
IN | |||||||
IC | |||||||
FS | |||||||
IS | |||||||
ED | |||||||
MO | |||||||
Consistency | 0.909 | 0.853 | 0.834 | 0.975 | 0.952 | 0.943 | 0.936 |
Raw coverage | 0.353 | 0.314 | 0.338 | 0.298 | 0.069 | 0.226 | 0.243 |
Unique coverage | 0.179 | 0.046 | 0.069 | 0.126 | 0.253 | 0.062 | 0.067 |
Solution consistency | 0.562 | 0.557 | |||||
Solution coverage | 0.861 | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Yang, Y.; Zhang, F. Configuration Analysis of Factors Influencing Port Competitiveness of Hinterland Cities under TOE Framework: Evidence from China. J. Mar. Sci. Eng. 2022, 10, 1558. https://doi.org/10.3390/jmse10101558
Huang Z, Yang Y, Zhang F. Configuration Analysis of Factors Influencing Port Competitiveness of Hinterland Cities under TOE Framework: Evidence from China. Journal of Marine Science and Engineering. 2022; 10(10):1558. https://doi.org/10.3390/jmse10101558
Chicago/Turabian StyleHuang, Zhenyu, Ying Yang, and Fengmei Zhang. 2022. "Configuration Analysis of Factors Influencing Port Competitiveness of Hinterland Cities under TOE Framework: Evidence from China" Journal of Marine Science and Engineering 10, no. 10: 1558. https://doi.org/10.3390/jmse10101558
APA StyleHuang, Z., Yang, Y., & Zhang, F. (2022). Configuration Analysis of Factors Influencing Port Competitiveness of Hinterland Cities under TOE Framework: Evidence from China. Journal of Marine Science and Engineering, 10(10), 1558. https://doi.org/10.3390/jmse10101558