Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organism
2.2. Exposure Solution Preparation and Chemical Analyses
2.3. Acute Toxicity Test
2.4. Biochemical Analysis
2.4.1. Antioxidant Defense Capacities
2.4.2. Non-Specific Immune Responses
2.5. Integrated Biomarker Response Version 2 (IBRv2) Index Analysis
2.6. Statistical Analysis
3. Results
3.1. Chemical Analysis and Water Quality
3.2. Phenotypic Assessments
3.3. Antioxidant Defense Capacities Assessment
3.4. Non-Specific Immune Responses Assessment
3.5. IBRv2 Index Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Telahigue, K.; Rabeh, I.; Bejaoui, S.; Hajji, T.; Nechi, S.; Chelbi, E.; El Cafsi, M.h.; Soudani, N. Mercury disrupts redox status, up-regulates metallothionein and induces genotoxicity in respiratory tree of sea cucumber (Holothuria forskali). Drug Chem. Toxicol. 2020, 43, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Morroni, L.; Rakaj, A.; Grosso, L.; Fianchini, A.; Pellegrini, D.; Regoli, F. Sea cucumber Holothuria polii (Delle Chiaje, 1823) as new model for embryo bioassays in ecotoxicological studies. Chemosphere 2020, 240, 124819. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, M.; Storey, K.B. Metabolic response of longitudinal muscles to acute hypoxia in sea cucumber Apostichopus japonicus (Selenka): A metabolome integrated analysis. Comp. Biochem. Physiol. D Genom. Proteom. 2019, 29, 235–244. [Google Scholar] [CrossRef]
- Gonzalez-Duran, E.; Hernandez-Flores, A.; Headley, M.D.; Canul, J.D. On the effects of temperature and pH on tropical and temperate holothurians. Conserv. Physiol. 2021, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Li, N.; Gao, Y.; Ju, Z.; Liao, G.; Xiong, D. Combined effects of elevated temperature and crude oil pollution on oxidative stress and apoptosis in sea cucumber (Apostichopus japonicus, Selenka). Int. J. Environ. Res. Public Health 2021, 18, 801. [Google Scholar] [CrossRef] [PubMed]
- Rakaj, A.; Fianchini, A.; Boncagni, P.; Scardi, M.; Cataudella, S. Artificial reproduction of Holothuria polii: A new candidate for aquaculture. Aquaculture 2019, 498, 444–453. [Google Scholar] [CrossRef]
- Xie, X.; Yang, M.; Sun, J.; Zhang, T.; Zhou, Z.; Wang, Q.; Zhang, L.; Yang, H. Quality evaluation of indoor- and outdoor-cultured sea cucumber (Apostichopus japonicus) seedlings: Insight from survival and immune performance in response to combined stress of hyperthermia and hyposalinity. Aquac. Res. 2019, 50, 3673–3683. [Google Scholar] [CrossRef]
- Hamel, J.F.; Mercier, A. Population status, fisheries and trade of sea cucumbers in temperate areas of the Northern Hemisphere. In Sea Cucumbers: A Global Review of Fisheries and Trade; FAO Fisheries and Aquaculture Technical Paper: Rome, Italy, 2008; pp. 257–292. [Google Scholar]
- Huo, D.; Sun, L.; Zhang, L.; Ru, X.; Liu, S.; Yang, X.; Yang, H. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. J. Proteom. 2019, 193, 27–43. [Google Scholar] [CrossRef]
- Liu, S.; Che, J.; Zha, Y.M.; Wei, H.F.; Liu, C.F. Toxicity of 3-methylphenanthrene on Japanese spiky sea cucumber (Apostichopus japonicus). Appl. Ecol. Environ. Res. 2022, 20, 69–77. [Google Scholar] [CrossRef]
- Hamidi, S.; Banaee, M.; Pourkhabbaz, H.R.; Sureda, A.; Khodadoust, S.; Pourkhabbaz, A.R. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). Environ. Sci. Pollut. Res. 2022, 29, 3718–3732. [Google Scholar] [CrossRef]
- Saeed, T.; Al-Mutairi, M. Chemical composition of the water-soluble fraction of the leaded gasolines in seawater. Environ. Int. 1999, 25, 117–129. [Google Scholar] [CrossRef]
- French-McCay, D.P.; Jayko, K.; Li, Z.; Spaulding, M.L.; Crowley, D.; Mendelsohn, D.; Horn, M.; Isaji, T.; Kim, Y.H.; Fontenault, J.; et al. Oil fate and mass balance for the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2021, 171, 112681. [Google Scholar] [CrossRef] [PubMed]
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil spill modeling: A critical review on current trends, perspectives, and challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- DeMiguel-Jiménez, L.; Etxebarria, N.; Lekube, X.; Izagirre, U.; Marigómez, I. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas. Mar. Pollut. Bull. 2021, 172, 112922. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, D.; Qi, Z.; Li, X.; Ju, Z.; Zhuang, X. Distribution of polycyclic aromatic hydrocarbons in sunken oils in the presence of chemical dispersant and sediment. J. Mar. Sci. Eng. 2019, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.B.; Pasparakis, C.; Stieglitz, J.D.; Benetti, D.; Grosell, M.; Schlenk, D. Effects of Corexit 9500A and Corexit-crude oil mixtures on transcriptomic pathways and developmental toxicity in early life stage mahi-mahi (Coryphaena hippurus). Aquat. Toxicol. 2019, 212, 233–240. [Google Scholar] [CrossRef]
- Li, X.; Xiong, D.; Ju, Z.; Xiong, Y.; Ding, G.; Liao, G. Phenotypic and transcriptomic consequences in zebrafish early-life stages following exposure to crude oil and chemical dispersant at sublethal concentrations. Sci. Total Environ. 2021, 763, 143053. [Google Scholar] [CrossRef]
- Prince, R.C. Oil spill dispersants: Boon or bane? Environ. Sci. Technol. 2015, 49, 6376–6384. [Google Scholar] [CrossRef] [Green Version]
- Laramore, S.; Krebs, W.; Garr, A. Effects of exposure of pink shrimp, Farfantepenaeus duorarum, larvae to Macondo Canyon 252 crude oil and the Corexit dispersant. J. Mar. Sci. Eng. 2016, 4, 24. [Google Scholar] [CrossRef]
- Farahani, M.D.; Zheng, Y. The formulation, development and application of oil dispersants. J. Mar. Sci. Eng. 2022, 10, 425. [Google Scholar] [CrossRef]
- Esteban-Sánchez, A.; Johann, S.; Bilbao, D.; Prieto, A.; Hollert, H.; Seiler, T.-B.; Orbea, A. Multilevel responses of adult zebrafish to crude and chemically dispersed oil exposure. Environ. Sci. Eur. 2021, 33, 106. [Google Scholar] [CrossRef]
- Scovil, A.M.; de Jourdan, B.P.; Speers-Roesch, B. Intraspecific variation in the sublethal effects of physically and chemically dispersed crude oil on early life stages of Atlantic cod (Gadus morhua). Environ. Toxicol. Chem. 2022, 41, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Shim, W.J.; Yim, U.H.; Kang, J.H. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere 2013, 92, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Bonatesta, F.; Emadi, C.; Price, E.R.; Wang, Y.; Greer, J.B.; Xu, E.G.; Schlenk, D.; Grosell, M.; Mager, E.M. The developing zebrafish kidney is impaired by Deepwater Horizon crude oil early-life stage exposure: A molecular to whole-organism perspective. Sci. Total Environ. 2022, 808, 151988. [Google Scholar] [CrossRef]
- Meador, J.P.; Nahrgang, J. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions? Environ. Sci. Technol. 2019, 53, 11080–11092. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.M.; Du Clos, K.T.; Hawkins, O.H.; Gemmell, B.J. Sublethal effects of crude oil and chemical dispersants on multiple life history stages of the eastern oyster, Crassostrea virginica. J. Mar. Sci. Eng. 2020, 8, 808. [Google Scholar] [CrossRef]
- Megharaj, M.; Singleton, I.; McClure, N.C.; Naidu, R. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch. Environ. Contam. Toxicol. 2000, 38, 439–445. [Google Scholar] [CrossRef]
- Li, X.; Ding, G.; Xiong, Y.; Ma, X.; Fan, Y.; Xiong, D. Toxicity of water-accommodated fractions (WAF), chemically enhanced WAF (CEWAF) of Oman crude oil and dispersant to early-life stages of zebrafish (Danio rerio). Bull. Environ. Contam. Toxicol. 2018, 101, 314–319. [Google Scholar] [CrossRef]
- Sørensen, L.; Sørhus, E.; Nordtug, T.; Incardona, J.P.; Linbo, T.L.; Giovanetti, L.; Karlsen, Ø.; Meier, S. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE 2017, 12, e0180048. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Li, X.; Liao, G.; Ju, Z.; Wang, C.; Li, N.; Xiong, D.; Zhang, Y. Antioxidant response and oxidative stress in the respiratory tree of sea cucumber (Apostichopus japonicus) following exposure to crude oil and chemical dispersant. J. Mar. Sci. Eng. 2020, 8, 547. [Google Scholar] [CrossRef]
- Hannam, M.L.; Bamber, S.D.; John Moody, A.; Galloway, T.S.; Jones, M.B. Immunotoxicity and oxidative stress in the Arctic scallop Chlamys islandica: Effects of acute oil exposure. Ecotoxicol. Environ. Saf. 2010, 73, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Vlahogianni, T.; Dassenakis, M.; Scoullos, M.J.; Valavanidis, A. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar. Pollut. Bull. 2007, 54, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Cui, Y.; Hou, Z.; Ren, Y.; Men, X.; Zheng, B.; Liu, P.; Xia, B. Effects of aerial exposure on oxidative stress, antioxidant and non-specific immune responses of juvenile sea cucumber Apostichopus japonicus under low temperature. Fish Shellfish Immunol. 2020, 101, 58–65. [Google Scholar] [CrossRef]
- Hannam, M.L.; Bamber, S.D.; Galloway, T.S.; John Moody, A.; Jones, M.B. Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere 2010, 78, 779–784. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, J.-C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations. Chemosphere 2015, 135, 46–52. [Google Scholar] [CrossRef]
- Liu, J.; Xu, D.; Chen, Y.; Zhao, C.; Liu, L.; Gu, Y.; Ren, Y.; Xia, B. Adverse effects of dietary virgin (nano)microplastics on growth performance, immune response, and resistance to ammonia stress and pathogen challenge in juvenile sea cucumber Apostichopus japonicus (Selenka). J. Hazard. Mater. 2022, 423, 127038. [Google Scholar] [CrossRef]
- Singer, M.M.; Aurand, D.; Bragin, G.E.; Clark, J.R.; Coelho, G.M.; Sowby, M.L.; Tjeerdema, R.S. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 2000, 40, 1007–1016. [Google Scholar] [CrossRef]
- Li, X.; Xiong, D.; Ding, G.; Fan, Y.; Ma, X.; Wang, C.; Xiong, Y.; Jiang, X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. Chemosphere 2019, 235, 423–433. [Google Scholar] [CrossRef]
- EPA. Method 610: Polynuclear Aromatic Hydrocarbons; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 1984; p. 25.
- Mee, C. Technical Guideline for Deriving Water Quality Criteria for Marine Organisms (on Trial); Ministry of Ecology and Environment of China (China MEE): Beijing, China, 2021; p. 129.
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Peskin, A.V.; Winterbourn, C.C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radic. Biol. Med. 2017, 103, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef]
- Ellis, A. Lysozyme assays. In Techniques in Fish Immunology; Stolen, J.S., Fletcher, T.C., Anderson, D.P., Kaattari, S.L., Rowley, A.F., Eds.; SOS Publications: Fair Haven, NJ, USA, 1990; pp. 101–103. [Google Scholar]
- Powell, M.E.; Smith, M.J. The determination of serum acid and alkaline phosphatase activity with 4-aminoantipyrine (A.A.P.). J. Clin. Pathol. 1954, 7, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef]
- Sanchez, W.; Burgeot, T.; Porcher, J.M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Res. 2013, 20, 2721–2725. [Google Scholar] [CrossRef]
- Riedel, B.; Zuschin, M.; Stachowitsch, M. Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: A realistic scenario. Mar. Ecol. Prog. Ser. 2012, 458, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Timme-Laragy, A.R.; Van Tiem, L.A.; Linney, E.A.; Di Giulio, R.T. Antioxidant responses and NRF2 in synergistic developmental toxicity of PAHs in zebrafish. Toxicol. Sci. 2009, 109, 217–227. [Google Scholar] [CrossRef]
- Nahrgang, J.; Camus, L.; Gonzalez, P.; Goksøyr, A.; Christiansen, J.S.; Hop, H. PAH biomarker responses in polar cod (Boreogadus saida) exposed to benzo(a)pyrene. Aquat. Toxicol. 2009, 94, 309–319. [Google Scholar] [CrossRef]
- Han, J.; Won, E.-J.; Hwang, D.-S.; Shin, K.-H.; Lee, Y.S.; Leung, K.M.-Y.; Lee, S.-J.; Lee, J.-S. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes. Aquat. Toxicol. 2014, 152, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Katsumiti, A.; Nicolussi, G.; Bilbao, D.; Prieto, A.; Etxebarria, N.; Cajaraville, M.P. In vitro toxicity testing in hemocytes of the marine mussel Mytilus galloprovincialis (L.) to uncover mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil without and with dispersant. Sci. Total Environ. 2019, 670, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, H.; Li, X.; Chen, H.; Ju, Z.; Xiong, D. Sex-specific differences in the toxic effects of heavy fuel oil on sea urchin (Strongylocentrotus intermedius). Int. J. Environ. Res. Public Health 2021, 18, 499. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussauze, M.; Danion, M.; Le Floch, S.; Lemaire, P.; Pichavant-Rafini, K.; Theron, M. Innate immunity and antioxidant systems in different tissues of sea bass (Dicentrarchus labrax) exposed to crude oil dispersed mechanically or chemically with Corexit 9500. Ecotoxicol. Environ. Saf. 2015, 120, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.B.; Mello, A.D.A.; Allodi, S.; de Barros, C.M. Acute exposure to water-soluble fractions of marine diesel oil: Evaluation of apoptosis and oxidative stress in an ascidian. Chemosphere 2018, 211, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Xiong, D.; Ren, H.; Chen, H.; Ju, Z. Exposure of adult sea urchin Strongylocentrotus intermedius to stranded heavy fuel oil causes developmental toxicity on larval offspring. PeerJ 2022, 10, e13298. [Google Scholar] [CrossRef]
- Bekki, K.; Toriba, A.; Tang, N.; Kameda, T.; Hayakawa, K. Biological effects of polycyclic aromatic hydrocarbon derivatives. J. UOEH 2013, 35, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.-E.; Saravanan, M.; Rhee, J.-S. Benzo[a]pyrene constrains embryo development via oxidative stress induction and modulates the transcriptional responses of molecular biomarkers in the marine medaka Oryzias javanicus. J. Environ. Sci. Health Part A 2020, 55, 1050–1058. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Concept and some practical aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Li, X.; Huo, C.; Chu, S.; Cui, Z.; Li, Y.; Wan, J.; Liu, R. Evaluation of fluorene-caused ecotoxicological responses and the mechanism underlying its toxicity in Eisenia fetida: Multi-level analysis of biological organization. J. Hazard. Mater. 2022, 437, 129342. [Google Scholar] [CrossRef] [PubMed]
- Circu, M.L.; Aw, T.Y. Glutathione and modulation of cell apoptosis. Biochim. Biophys. Acta 2012, 1823, 1767–1777. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Ding, G.; Li, X.; Xiong, D. Comparison of toxicity effects of fuel oil treated by different dispersants on marine medaka (Oryzias melastigma) embryo. Acta Oceanol. Sin. 2018, 37, 123–132. [Google Scholar] [CrossRef]
- Tairova, Z.; Frantzen, M.; Mosbech, A.; Arukwe, A.; Gustavson, K. Effects of water accommodated fraction of physically and chemically dispersed heavy fuel oil on beach spawning capelin (Mallotus villosus). Mar. Environ. Res. 2019, 147, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Hannam, M.L.; Bamber, S.D.; Moody, J.A.; Galloway, T.S.; Jones, M.B. Immune function in the Arctic Scallop, Chlamys islandica, following dispersed oil exposure. Aquat. Toxicol. 2009, 92, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bouallegui, Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. Fish Shellfish Immunol. 2019, 89, 158–169. [Google Scholar] [CrossRef]
- Pinsino, A.; Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 2015, 49, 198–205. [Google Scholar] [CrossRef]
- Xue, Z.; Li, H.; Wang, X.; Li, X.; Liu, Y.; Sun, J.; Liu, C. A review of the immune molecules in the sea cucumber. Fish Shellfish Immunol. 2015, 44, 11. [Google Scholar] [CrossRef]
- Zang, Y.; Tian, X.; Dong, S.; Dong, Y. Growth, metabolism and immune responses to evisceration and the regeneration of viscera in sea cucumber, Apostichopus japonicus. Aquaculture 2012, 358–359, 50–60. [Google Scholar] [CrossRef]
- Ellis, R.P.; Parry, H.; Spicer, J.I.; Hutchinson, T.H.; Pipe, R.K.; Widdicombe, S. Immunological function in marine invertebrates: Responses to environmental perturbation. Fish Shellfish Immunol. 2011, 30, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-M.; Ma, Y.-X.; Yang, Z.-P.; Li, M.; Liu, J.; Bao, P.-Y. Immune responses and disease resistance of the juvenile sea cucumber Apostichopus japonicus induced by Metschnikowia sp. C14. Aquaculture 2012, 368–369, 10–18. [Google Scholar] [CrossRef]
- Yan, F.-J.; Tian, X.-L.; Dong, S.-L.; Fang, Z.-H.; Yang, G. Growth performance, immune response, and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 2014, 420–421, 105–111. [Google Scholar] [CrossRef]
- Jasperse, L.; Levin, M.; Tsantiris, K.; Smolowitz, R.; Perkins, C.; Ward, J.E.; De Guise, S. Comparative toxicity of Corexit® 9500, oil, and a Corexit®/oil mixture on the eastern oyster, Crassostrea virginica (Gmelin). Aquat. Toxicol. 2018, 203, 10–18. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zou, Y.; Xuan, H.; Yang, W.; Liao, G.; Wang, C.; Xiong, D. Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus). J. Mar. Sci. Eng. 2022, 10, 1544. https://doi.org/10.3390/jmse10101544
Li X, Zou Y, Xuan H, Yang W, Liao G, Wang C, Xiong D. Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus). Journal of Marine Science and Engineering. 2022; 10(10):1544. https://doi.org/10.3390/jmse10101544
Chicago/Turabian StyleLi, Xishan, Yuhang Zou, Hao Xuan, Wei Yang, Guoxiang Liao, Chengyan Wang, and Deqi Xiong. 2022. "Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus)" Journal of Marine Science and Engineering 10, no. 10: 1544. https://doi.org/10.3390/jmse10101544
APA StyleLi, X., Zou, Y., Xuan, H., Yang, W., Liao, G., Wang, C., & Xiong, D. (2022). Impact of Physically and Chemically Dispersed Crude Oil on the Antioxidant Defense Capacities and Non-Specific Immune Responses in Sea Cucumber (Apostichopus japonicus). Journal of Marine Science and Engineering, 10(10), 1544. https://doi.org/10.3390/jmse10101544