Impact of Coastal Sediments of the Northern Dvina River on Microplastics Inputs to the White and Barents Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Extraction and Laboratory Analysis
2.3. Plastic Standard Samples
2.4. µFT-IR Analysis
2.5. Py-GC/MS Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Lavender, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, N.; Korez, S. Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review. YOUMARES 9—The Oceans: Our Research, Our Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–120. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.M.; Bourdages, M.P.T.; Geoffroy, C.; Vermaire, J.C.; Mallory, M.L.; Rochman, C.M.; Provencher, J.F. Microplastics around an Arctic seabird colony: Particle community composition varies across environmental matrices. Sci. Total Environ. 2021, 773, 145536. [Google Scholar] [CrossRef] [PubMed]
- Tošić, T.N.; Vruggink, M.; Vesman, A. Microplastics quantification in surface waters of the Barents, Kara and White Seas. Mar. Pollut. Bull. 2020, 161, 111745. [Google Scholar] [CrossRef] [PubMed]
- De Witte, B.; Devriese, L.; Bekaert, K.; Hoffman, S.; Vandermeersch, G.; Cooreman, K.; Robbens, J. Quality assessment of the blue mussel (Mytilus edulis): Comparisonbetween commercial and wild types. Mar. Pollut. Bull. 2014, 85, 146–155. [Google Scholar] [CrossRef]
- Dümichen, E.; Barthel, A.-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015, 85, 451–457. [Google Scholar] [CrossRef]
- Lambert, S.; Sinclair, C.; Boxall, A. Occurrence, Degradation, and Effect of Polymer-based Materials in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, Switzerland, 2014; Volume 227, pp. 1–53. [Google Scholar]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Besseling, E.; Redondo-Hasselerharm, P.; Foekema, E.M.; Koelmans, A.A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 2018, 49, 32–80. [Google Scholar] [CrossRef] [Green Version]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Magnusson, K.; Wahlberg, C. Mikroskopiska Skräppartiklar i Vatten Från Avloppsreningsverk. IVL-Rapport. B 2014, 2208. Available online: https://www.ivl.se (accessed on 1 September 2022).
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Hartmann, N.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.M.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bänsch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Sirajum, M.; Bhuiyan, M.A.; Haque, N.; Shah, K.; Roychand, R.; Hai, I.F.; Pramanik, B.K. Understanding the fate and control of road dust-associatedmicroplastics in stormwater. Process. Saf. Environ. Prot. 2021, 152, 47–57. [Google Scholar] [CrossRef]
- Dou, P.C.; Mai, L.; Bao, L.J.; Zeng, E.Y. Microplastics on beaches and mangrove sediments along the coast of South China. Mar. Pollut. Bull. 2021, 172, 112806. [Google Scholar] [CrossRef] [PubMed]
- Novotna, K.; Cermakova, L.; Pivokonska, L.; Cajthaml, T.; Pivokonsky, M. Microplastics in drinking water treatment—Current knowledge and research needs. Sci. Total Environ. 2019, 667, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Ding, Y.; Wang, Y.; Yu, W.; Zou, X.; Chen, H.; Fu, G.; Ding, D.; Tang, J.; Tang, X.; et al. Microplastic pollution in Larimichthys polyactis in the coastal area of Jiangsu, China. Mar. Pollut. Bull. 2021, 173, 113050. [Google Scholar] [CrossRef]
- Kozhevnikov, A.Y.; Falev, D.I.; Sypalov, S.A.; Kozhevnikova, I.S.; Kosyakov, D.S. Polycyclic aromatic hydrocarbons in the snow cover of the northern city agglomeration. Sci. Rep. 2021, 11, 19074. [Google Scholar] [CrossRef]
- Zhdanov, I.; Lokhov, A.; Belesov, A.; Kozhevnikov, A.; Pakhomova, S.; Berezina, A.; Frolova, N.; Kotova, E.; Leshchev, A.; Wang, X.; et al. Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean. Mar. Pollut. Bull. 2022, 175, 113370. [Google Scholar] [CrossRef]
- Pereao, O.; Opeolu, B.; Fatoki, O. Microplastics in aquatic environment: Characterization, ecotoxicological effect, implications for ecosystems and developments in South Africa. Environ. Sci. Pollut. Res. 2020, 27, 22271–22291. [Google Scholar] [CrossRef]
- Shim, W.J. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Microplastics analysis in environmental samples—Recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass related data. Anal. Methods 2019, 11, 18. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-X.; Hao, L.-T.; Wang, H.-Y.-Z.; Li, Y.-J.; Liu, J.-F. Cloud-Point Extraction Combined with Thermal Degradation for Nanoplastic Analysis Using Pyrolysis Gas Chromatography–Mass Spectrometry. Anal. Chem. 2019, 91, 1785–1790. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, M.; Scholz-Böttcher, B.M.; Oberbeckmann., S.; Labrenz, M.; Fischer, D.; Eichhorn, K.-J.; Voit, B. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal. Bioanal. Chem. 2018, 410, 5313–5327. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Himber, C.; Boricaud, B.; Kazour, M.; Amara, R.; Cassone, A.L.; Laurentie, M.; Paul-Pont, I.; Soudant, P.; Dehaut, A.; et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal. Bioanal. Chem. 2018, 410, 6663–6676. Available online: https://link.springer.com/article/10.1007/s00216-018-1279-0 (accessed on 1 September 2022). [CrossRef] [PubMed] [Green Version]
- Krauskopf, L.-M.; Hemmerich, H.; Dsikowitzky, L.; Schwarzbauer, J. Critical aspects on off-line pyrolysis-based quantification of microplastic in environmental samples. J. Anal. Appl. Pyrolysis 2020, 152, 104830. [Google Scholar] [CrossRef]
- Watteau, F.; Dignac, M.-F.; Bouchard, A.; Revallier, A.; Houot, S. Microplastic Detection in Soil Amended with Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS. Front. Sustain. Food Syst. 2018, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Francisca, R.F.; Okoffo, E.D.; O’Brien, J.W.; Fraissinet-Tachet, S.; O’Brien, S.; Gallen, M.; Samanipour, S.; Kaserzon, S.; Mueller, J.F.; Galloway, T.; et al. Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry. Environ. Sci. Technol. 2020, 54, 9408–9417. [Google Scholar] [CrossRef]
- Prata, J.C.; Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Courtney, A. Laboratory Methods for the Analysis of Microplastics in Themarine Environment: Recommendations for Quantifying Synthetic Particles in Watersand Sediments. NOAA Marine Debris Program. National Oceanic and Atmospheric Administration. U.S. Department of Commerce 2015 NOS-OR&R-48. Available online: https://repository.oceanbestpractices.org/handle/11329/1076 (accessed on 1 September 2022).
- Fangfang, L.; Jun, W.; Chen, S.; Jiaxing, S.; Wanli, W.; Yuhan, P.; Qunxing, H.; Jianhua, Y. Influence of interaction on accuracy of quantification of mixed microplastics using Py-GC/MS. J. Environ. Chem. Eng. 2022, 10, 108012. [Google Scholar] [CrossRef]
- Primpke, S.; Fischer, M.; Lorenz, C.; Gerdts, G.; Scholz-Böttcher, B.M. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal. Bioanal. Chem. 2020, 412, 8283–8298. [Google Scholar] [CrossRef] [PubMed]
- Urban-Malinga, B.; Zalewski, M.; Jakubowska, A.; Wodzinowski, T.; Malinga, M.; Pałys, B.; Dąbrowska, A. Microplastics on sandy beaches of the southern Baltic Sea. Mar. Pollut. Bull. 2020, 155, 111170. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakov, S.R.; Ivanova, E.V.; Guzeva, A.V.; Shalunova, E.P.; Martinson, K.D.; Tikhonova, D.A. Studying the Concentration of Microplastic Particles in Water, Bottom Sediments and Subsoils in the Coastal Area of the Neva Bay, the Gulf of Finland. Water Resour. 2020, 47, 411–420. [Google Scholar] [CrossRef]
- Dodson, G.Z.; Shotorban, A.K.; Hatcher, P.G.; Waggoner, D.C.; Ghosal, S.; Noffke, N. Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar. Pollut. Bull. 2020, 151, 110869. [Google Scholar] [CrossRef]
- Bayo, J.; Rojo, D.; Olmos, S. Weathering indices of microplastics along marine and coastal sediments from the harbor of Cartagena (Spain) and its adjoining urban beach. Mar. Pollut. Bull. 2022, 178, 113647. [Google Scholar] [CrossRef]
- Yakushev, E.; Gebruk, A.; Osadchiev, A. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun. Earth Environ. 2021, 2, 23. Available online: https://www.nature.com/articles/s43247-021-00091-0 (accessed on 1 September 2022). [CrossRef]
- Lisitzin, A.P.; Novigatsky, A.N.; Aliev, R.A.; Shevchenko, V.P.; Klyuvitkin, A.A.; Kravchishina, M.D. Comparative study of vertical suspension fluxes from the water column, rates of sedimentation, and absolute masses of the bottom sediments in the White Sea basin of the Arctic Ocean. Dokl. Earth Sci. 2015, 465, 1253–1256. [Google Scholar] [CrossRef]
Value | Sampling Point | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
Particles/year | 59 | 48 | 64 | 69 | 85 | 85 | 218 | 170 | 165 | 165 | 165 | 117 | 64 | 85 | 69 | 69 |
Mg/year | 16 | 16 | 16 | 21 | 21 | 37 | 117 | 80 | 59 | 59 | 53 | 53 | 21 | 16 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belesov, A.V.; Rezviy, T.V.; Pokryshkin, S.A.; Lakhmanov, D.E.; Chukhchin, D.G.; Kozhevnikov, A.Y. Impact of Coastal Sediments of the Northern Dvina River on Microplastics Inputs to the White and Barents Seas. J. Mar. Sci. Eng. 2022, 10, 1485. https://doi.org/10.3390/jmse10101485
Belesov AV, Rezviy TV, Pokryshkin SA, Lakhmanov DE, Chukhchin DG, Kozhevnikov AY. Impact of Coastal Sediments of the Northern Dvina River on Microplastics Inputs to the White and Barents Seas. Journal of Marine Science and Engineering. 2022; 10(10):1485. https://doi.org/10.3390/jmse10101485
Chicago/Turabian StyleBelesov, Artyom V., Timofey V. Rezviy, Sergey A. Pokryshkin, Dmitry E. Lakhmanov, Dmitry G. Chukhchin, and Alexandr Yu. Kozhevnikov. 2022. "Impact of Coastal Sediments of the Northern Dvina River on Microplastics Inputs to the White and Barents Seas" Journal of Marine Science and Engineering 10, no. 10: 1485. https://doi.org/10.3390/jmse10101485
APA StyleBelesov, A. V., Rezviy, T. V., Pokryshkin, S. A., Lakhmanov, D. E., Chukhchin, D. G., & Kozhevnikov, A. Y. (2022). Impact of Coastal Sediments of the Northern Dvina River on Microplastics Inputs to the White and Barents Seas. Journal of Marine Science and Engineering, 10(10), 1485. https://doi.org/10.3390/jmse10101485