Evaluation of Port–Hinterland Synergy Level Considering Fixed Asset Allocation and Social Commodity Circulation under the “Dual Circulation” Development Pattern
Abstract
:1. Introduction
2. Literature Review
2.1. Evaluation of Synergetic Degree
2.2. Hinterland Division
2.3. The Relationship between Port and Hinterland Economy
3. Construction of Port–Hinterland Synergetic Degree Indicator
3.1. Port–Hinterland Interaction Mechanism
3.2. Indices of Port–Hinterland Coupling Synergetic Degree
4. Construction of Port–Hinterland Synergetic Degree Model
4.1. Hinterland Division Based on Field Strength Model
4.1.1. Port Energy Level Index
4.1.2. Time Distance Measurement Based on Baidu Map
4.1.3. Field Strength Model
4.2. Coupling and Synergetic Degree Calculation Model
4.2.1. System Order Degree
4.2.2. Synergy Degree Model
4.3. Regression Model Based on PLS
4.4. Selection of Research Objects
5. Results and Discussions
5.1. The Results of Port–Hinterland Coupling Synergy Degree
5.1.1. Clustering Analysis of Port–Hinterland Coupling Synergy Degree
5.1.2. The Fluctuation of Port–Hinterland Coupling Coordination Degree
5.1.3. Index Weight Analysis
5.1.4. Development Level of Port and Hinterland Subsystem
5.2. Regression Results Based on PLS
5.2.1. Selection of Variables and Model Construction
5.2.2. Regression Results
5.2.3. Impact of Different Types of Demand on the Level of Port–Hinterland Synergy
- Variable Selection
- 2.
- Regression Results
- 3.
- After , , , and were set as control variables, Table 9 shows the coefficients and R2 of the four regression equations. The correlation coefficients of each independent variable in the four equations are significant.
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.F.; He, D.X.; Fan, C.L.; Tian, G.Q.; Guo, Q.W.; Wan, G.H. Forging ahead in the New Era and Starting a new journey: Learning and implementing the spirit of the Fifth Plenary Session of the 19th CPC Central Committee (II). Econ. Res. J. 2021, 56, 4–25. (In Chinese) [Google Scholar]
- Xie, F.Z.; Liu, W.; Wang, G.G.; Zhang, Z.B.; Huang, Q.H.; Wei, H.K.; Zhang, C.W.; Zhang, X.J.; Zheng, W.J.; Tong, J.D.; et al. Forging ahead in the New Era and Starting a new journey: Learning and implementing the spirit of the Fifth Plenary Session of the 19th CPC Central Committee (Part I). Econ. Res. J. 2020, 55, 4–45. (In Chinese) [Google Scholar]
- Haken, H. Basic Concepts of Synergetics. Appl. Phys. A Mater. Sci. Process. 1993, 57, 111–115. [Google Scholar] [CrossRef]
- Haken, H. Synergetics—An Overview. Rep. Prog. Phys. 1989, 52, 515–553. [Google Scholar] [CrossRef]
- Chen, Z.; Su, L.; Zhang, C. Research on the Synergy Degree of Aboveground and Underground Space along Urban Rail Transit from the Perspective of Urban Sustainable Development. Sustainability 2016, 8, 934. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.B. Quantitative evaluation of coordinated development of environment and economy and its classification system–The case of Pearl River Delta urban agglomeration. Trop. Geogr. 1999, 02, 76–82. (In Chinese) [Google Scholar]
- Zhan, B.; Ni, R. Study on the synergistic development of port logistics and regional economy in Beibu Gulf of Guangxi. Water Transp. Manag. 2021, 43, 17–20. (In Chinese) [Google Scholar]
- Liu, F.Y.; Liu, H.W.; Liu, Y.T. Study on the coupling coordination degree of Yangtze River Delta port cluster considering efficiency. Logist. Eng. Manag. 2021, 43, 135–139. (In Chinese) [Google Scholar]
- Meng, K.; Zhang, C. A study on the coupling and synergistic development of inland river port logistics and regional industry--Wuhan New Port as an example. Price Mon. 2021, 01, 80–87. (In Chinese) [Google Scholar]
- Lu, B.; Qiu, W.Q.; Xing, J.; Wen, Y.J. Study on the development strategies of China’s coastal node ports and port cities based on the evaluation of “One Belt One Road” initiative. Syst. Eng. Theory Pract. 2020, 40, 1627–1639. (In Chinese) [Google Scholar]
- Cen, X.T.; Su, J.; Huang, C. Research on the evaluation of regional science and technology collaborative innovation based on coupled coordination model--Taking the Shanghai-Jiaxing-Hangzhou G60 science and technology innovation corridor as an example. Zhejiang Soc. Sci. 2019, 08, 26–33+155–156. (In Chinese) [Google Scholar]
- Zhang, L.; Zheng, Z.; Liu, S. An empirical study on the coordination of Hebei port industry and economic growth. Bol. Tec. /Tech. Bull. 2017, 55, 589–596. [Google Scholar]
- Lin, Y.Z.; Peng, C.; Chen, P.; Zhang, M.J. Conflict or synergy? Analysis of economic-social- infrastructure-ecological resilience and their coupling coordination in the Yangtze River economic Belt, China. Ecol. Indic. 2022, 142, 109194. [Google Scholar] [CrossRef]
- Cheng, X.; Long, R.Y.; Chen, H.; Li, Q.W. Coupling coordination degree and spatial dynamic evolution of a regional green competitiveness system—A case study from China. Ecol. Indic. 2019, 104, 489–500. [Google Scholar] [CrossRef]
- Wang, S.J.; Ma, H.T.; Zhao, Y.B. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Yang, J.P.; Zhang, M.L. Analysis of the synergy between ports and port-side industrial parks in Liaoning coastal economic zone. Econ. Res. Ref. 2013, 27, 36–41. (In Chinese) [Google Scholar]
- Lv, Q.; Tang, Q.S. Study on the synergistic development of port logistics and regional economy. Water Transp. Eng. 2012, 04, 67–70. (In Chinese) [Google Scholar]
- Gao, T.; Gao, J.M.; Qu, L.C. The correlation effect of port city development based on DEA and partial correlation analysis. China Navig. 2017, 40, 129–134. (In Chinese) [Google Scholar]
- Wu, L.; Wang, C. Evaluating Shipping Efficiency in Chinese Port Cities: Four-Stage Bootstrap DEA Model. J. Mar. Sci. Eng. 2022, 10, 870. [Google Scholar] [CrossRef]
- Li, H.; Jiang, L.; Liu, J.; Su, D. Research on the Evaluation of Logistics Efficiency in Chinese Coastal Ports Based on the Four-Stage DEA Model. J. Mar. Sci. Eng. 2022, 10, 1147. [Google Scholar] [CrossRef]
- Chairullah, A.; Heti, M.; Eva, A.; Tridoyo, K. Impact of maritime logistics on archipelagic economic development in eastern Indonesia. Asian J. Shipp. Logistic. 2021, 37, 157–164. [Google Scholar]
- Fancello, G.; Serra, P.; Aramu, V.; Vitiello, D.M. Evaluating the efficiency of Mediterranean container ports using data envelopment analysis. Compet. Regul. Netw. Ind. 2021, 22, 163–188. [Google Scholar] [CrossRef]
- Stanković, J.J.; Marjanović, I.; Papathanasiou, J.; Drezgić, S. Social, Economic and Environmental Sustainability of Port Regions: MCDM Approach in Composite Index Creation. J. Mar. Sci. Eng. 2021, 9, 74. [Google Scholar] [CrossRef]
- Li, S.; Hercules, H.; Zeng, Q.C. Economic forces shaping the evolution of integrated port systems—The case of the container port system of China’s Pearl River Delta. Res. Transp. Econ. 2022, 94, 101183. [Google Scholar] [CrossRef]
- Santos, T.A.; Soares, C.G. Container terminal potential hinterland delimitation in a multi-port system subject to a regionalization process. J. Transp. Geogr. 2019, 75, 132–146. [Google Scholar] [CrossRef]
- Li, H.; Xu, D. The division of container port hinterland based on empirical analysis. J. Shanghai Marit. Univ. 2020, 41, 45–50. (In Chinese) [Google Scholar]
- Song, B.L. Analysis of international container multimodal transport and the competitiveness of eastern ports. China Navig. 2003, 03, 63–66. (In Chinese) [Google Scholar]
- Ye, C.; Shao, B.; Li, R.R. Study on the relationship between the division of port economic hinterland and the promotion of regional economic development--analysis based on the case of Xiamen port’s economic development of hinterland driven by sea-rail intermodal transport. Price Theory Pract. 2021, 10, 181–184+196. (In Chinese) [Google Scholar]
- Wen, H.Y.; Jiang, L. Research on the division of urban hinterland in Guangdong-Hong Kong-Macao Greater Bay Area based on traffic accessibility. J. South China Univ. Technol. (Nat. Sci. Ed.) 2021, 49, 79–88. (In Chinese) [Google Scholar]
- Liu, W.B.; Zhu, Z.H.; Wang, L. Classification of Liaoning coastal port hinterland based on field strength model. Resour. Dev. Market 2019, 35, 618–624. (In Chinese) [Google Scholar]
- Michele, A.; Andrea, B.; Maria, I.C.; Claudio, F.; Alessio, T. Contested port hinterlands: An empirical survey on Adriatic seaports. Case Stud. Transp. Policy 2017, 5, 342–350. [Google Scholar]
- Huang, G.Y.; Feng, X.J.; Chen, M.L.; Jiang, L.P.; Wang, H.P.; Wang, S.Y. Spatial evolution model of port group hinterland from the perspective of intermodal transport. Marit. Policy Manag. 2021. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Z.F.; Duan, W.; Li, X.D.; Bao, Q. Evolution of the hinterlands of eight Chinese ports exporting to Europe under the Polar Silk Road: Three hypothetical scenarios. Ocean. Coast. Manag. 2021, 205, 105549. [Google Scholar] [CrossRef]
- José, I.C.-M.; Fernando, G.-L.; Lourdes, L.-V. Intermodal connections at Spanish ports and their role in capturing hinterland traffic. Ocean. Coast. Manag. 2013, 86, 1–12. [Google Scholar]
- Ticiana, G.Z.M.; Lorena, G.-A.; María, H.S.-O. Delimiting the scope of the hinterland of ports: Proposal and case study. J. Transp. Geogr. 2017, 65, 35–43. [Google Scholar]
- Song, L.L.; Marina, V.G. Port infrastructure investment and regional economic growth in China: Panel evidence in port regions and provinces. Transp. Policy 2014, 36, 173–183. [Google Scholar] [CrossRef]
- Wang, C.; Kim, Y.S.; Kim, C.Y. Causality between logistics infrastructure and economic development in China. Transp. Policy 2021, 100, 49–58. [Google Scholar] [CrossRef]
- Jiang, Z.R.; Pi, C.f.; Zhu, H.Y.; Wang, C.J.; Ye, S.L. Temporal and spatial evolution and influencing factors of the port system in Yangtze River Delta Region from the perspective of dual circulation: Comparing port domestic trade throughput with port foreign trade throughput. Transp. Policy 2022, 118, 79–90. [Google Scholar]
- Bottasso, A.; Conti, M.; Ferrari, C.; Tei, A. Ports and regional development: A spatial analysis on a panel of European regions. Transp. Res. Part A Policy Pract. 2014, 65, 44–55. [Google Scholar] [CrossRef]
- Deng, P.; Lu, S.Q.; Xiao, H.B. Evaluation of the relevance measure between ports and regional economy using structural equation modeling. Transp. Policy 2013, 27, 123–133. [Google Scholar] [CrossRef]
- Cong, L.Z.; Zhang, D.; Wang, M.L.; Xu, H.F.; Li, L. The role of ports in the economic development of port cities: Panel evidence from China. Transp. Policy 2020, 90, 13–21. [Google Scholar] [CrossRef]
- Si, Z.C. Interactive development of port infrastructure and port city economy. Manag. Rev. 2015, 27, 33–43. (In Chinese) [Google Scholar]
- Qi, C.; Fang, Q.L. Implementation and empirical analysis of partial least squares modeling in R software. Math. Theory Appl. 2013, 33, 103–111. (In Chinese) [Google Scholar]
System Layer | Level-1 Indicators | Level-2 Indicators | Meaning | Attribute |
---|---|---|---|---|
Level of Port Development | Port Construction Capacity | Berth length | Port’s handling capacity | + |
Berth number | + | |||
Number of berths for ships over 10,000 tons | + | |||
Port Transportation Scale | Domestic cargo throughput | Domestic trade throughput | + | |
Domestic trade container throughput | + | |||
Foreign trade cargo throughput | Foreign trade throughput | + | ||
Foreign trade container throughput | + | |||
Level of Hinterland Development | Hinterland Economic Volume | GDP | GDP of hinterland | + |
Investment in fixed assets | Fixed-asset investment | + | ||
The output value of tertiary industry | Three forms of social commodity circulation | + | ||
Degree of Industrial Development | The total volume of import and export trade | + | ||
Total retail sales of consumer goods | + | |||
Level of Urbanization | The population of permanent urban residents | Level of urbanization of hinterland | + |
Region | Ports | Hinterland |
---|---|---|
Liaoning Province | Dalian Port, Yingkou Port, Dandong Port and Jinzhou Port | Three northeastern provinces and eastern Inner Mongolia |
Beijing-Tianjin-Hebei Province | Tianjin Port, Qinhuangdao Port, Tangshan Port, Huanghua Port | Beijing and Tianjin, north China and some areas extending westward |
Shandong Province | Qingdao Port, Yantai Port, Rizhao Port, and Weihai Port | The Shandong Peninsula and its westward extension of some areas |
Yangtze River Delta | Shanghai Port, Ningbo–Zhoushan Port, Lianyungang Port | Yangtze River Delta and regions along the Yangtze River |
Fujian Province | Xiamen Port, Fuzhou Port | Fujian province, Jiangxi, and other inland provinces |
Pearl River Delta | Shenzhen Port, Guangzhou Port, Zhuhai Port, and Shantou Port | South China, some southwest provinces and cities |
Southwest China | Qinzhou Port, Fangcheng Port and Haikou Port | Main coastal areas in southwest China |
Port–Hinterland Coupling Synergy Degree | |
---|---|
Min. | 0.050 |
Max. | 0.920 |
SE | 0.215 |
K-S Test | statistic = 0.150, p value = 5.742 × 10−6 |
Port | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Dalian Port | 0.55 | 0.56 | 0.61 | 0.60 | 0.58 | 0.55 | 0.56 | 0.56 | 0.54 | 0.41 |
Yingkou Port | 0.42 | 0.45 | 0.49 | 0.48 | 0.48 | 0.47 | 0.44 | 0.45 | 0.40 | 0.32 |
Dandong Port | 0.13 | 0.12 | 0.14 | 0.14 | 0.14 | 0.13 | 0.12 | 0.10 | 0.09 | 0.05 |
Jinzhou Port | 0.16 | 0.17 | 0.16 | 0.17 | 0.15 | 0.14 | 0.13 | 0.14 | 0.16 | 0.11 |
Qinhuangdao Port | 0.18 | 0.14 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.13 |
Tangshan Port | 0.33 | 0.38 | 0.4 | 0.47 | 0.47 | 0.49 | 0.53 | 0.48 | 0.51 | 0.42 |
Huanghua Port | 0.17 | 0.22 | 0.19 | 0.20 | 0.20 | 0.21 | 0.21 | 0.22 | 0.21 | 0.18 |
Tianjin Port | 0.72 | 0.74 | 0.77 | 0.75 | 0.75 | 0.74 | 0.70 | 0.70 | 0.69 | 0.56 |
Qingdao Port | 0.57 | 0.62 | 0.64 | 0.62 | 0.62 | 0.60 | 0.63 | 0.59 | 0.59 | 0.54 |
Yantai Port | 0.29 | 0.32 | 0.32 | 0.31 | 0.32 | 0.37 | 0.38 | 0.42 | 0.37 | 0.28 |
Rizhao Port | 0.33 | 0.35 | 0.35 | 0.39 | 0.38 | 0.42 | 0.35 | 0.41 | 0.40 | 0.28 |
Weihai Port | 0.15 | 0.20 | 0.16 | 0.16 | 0.15 | 0.16 | 0.19 | 0.19 | 0.17 | 0.17 |
Shanghai Port | 0.87 | 0.87 | 0.90 | 0.92 | 0.91 | 0.91 | 0.91 | 0.90 | 0.89 | 0.78 |
Lianyungang Port | 0.28 | 0.30 | 0.31 | 0.32 | 0.32 | 0.33 | 0.31 | 0.30 | 0.30 | 0.26 |
Ningbo-Zhoushan Port | 0.73 | 0.76 | 0.77 | 0.77 | 0.78 | 0.79 | 0.81 | 0.81 | 0.82 | 0.69 |
Taizhou Port | 0.19 | 0.19 | 0.20 | 0.20 | 0.20 | 0.23 | 0.23 | 0.21 | 0.21 | 0.17 |
Wenzhou Port | 0.23 | 0.22 | 0.24 | 0.24 | 0.22 | 0.24 | 0.22 | 0.25 | 0.25 | 0.37 |
Jiaxing Port | 0.15 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | 0.21 | 0.22 | 0.22 | 0.19 |
Fuzhou Port | 0.3 | 0.33 | 0.34 | 0.35 | 0.35 | 0.35 | 0.35 | 0.37 | 0.37 | 0.31 |
Xiamen Port | 0.36 | 0.37 | 0.39 | 0.39 | 0.40 | 0.40 | 0.4 | 0.40 | 0.40 | 0.34 |
Quanzhou Port | 0.23 | 0.23 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.27 | 0.21 |
Guangzhou Port | 0.63 | 0.66 | 0.70 | 0.70 | 0.70 | 0.64 | 0.66 | 0.71 | 0.69 | 0.57 |
Zhanjiang Port | 0.22 | 0.22 | 0.23 | 0.23 | 0.24 | 0.25 | 0.24 | 0.24 | 0.23 | 0.19 |
Shantou Port | 0.18 | 0.16 | 0.20 | 0.20 | 0.19 | 0.20 | 0.18 | 0.19 | 0.19 | 0.22 |
Shenzhen Port | 0.60 | 0.61 | 0.61 | 0.60 | 0.62 | 0.60 | 0.63 | 0.59 | 0.59 | 0.39 |
Beihai Port | 0.05 | 0.06 | 0.06 | 0.06 | 0.08 | 0.09 | 0.09 | 0.09 | 0.09 | 0.11 |
Fangchenggang Port | 0.25 | 0.28 | 0.27 | 0.28 | 0.28 | 0.28 | 0.29 | 0.27 | 0.27 | 0.23 |
Qinzhou Port | 0.22 | 0.25 | 0.25 | 0.26 | 0.27 | 0.28 | 0.27 | 0.29 | 0.31 | 0.27 |
Types | Ports |
---|---|
High-Level Synergy | Shanghai Port |
Medium-high Level Synergy | Ningbo-Zhoushan Port, Guangzhou Port, Tianjin Port, Shenzhen Port, Qingdao Port, Dalian Port |
General Level Synergy | Xiamen Port, Rizhao Port, Fuzhou port, Yantai Port, Tangshan Port, Yingkou Port |
Low-Level Synergy | Lianyungang Port, Wenzhou Port, Beihai Port, Zhanjiang Port, Qinzhou Port, Fangchenggang Port, Quanzhou Port, Dandong port, Qinhuangdao Port, Jinzhou Port, Jiaxing Port, Weihai Port, Shantou Port, Taizhou Port, Huanghua Port |
Port | Port Subsystem | Hinterland Subsystem |
---|---|---|
Dalian Port | 0.277 | 0.349 |
Yingkou Port | 0.164 | 0.241 |
Dandong Port | 0.043 | 0.005 |
Jinzhou Port | 0.032 | 0.017 |
Qinhuangdao Port | 0.078 | 0.01 |
Tangshan Port | 0.220 | 0.202 |
Huanghua Port | 0.061 | 0.028 |
Tianjin Port | 0.365 | 0.736 |
Qingdao Port | 0.359 | 0.378 |
Yantai Port | 0.161 | 0.091 |
Rizhao Port | 0.162 | 0.117 |
Weihai Port | 0.039 | 0.024 |
Shanghai Port | 0.750 | 0.845 |
Lianyungang Port | 0.135 | 0.064 |
Ningbo-Zhoushan Port | 0.666 | 0.547 |
Taizhou Port | 0.053 | 0.035 |
Wenzhou Port | 0.067 | 0.074 |
Jiaxing Port | 0.054 | 0.026 |
Fuzhou Port | 0.127 | 0.112 |
Xiamen Port | 0.206 | 0.110 |
Quanzhou Port | 0.074 | 0.052 |
Guangzhou Port | 0.430 | 0.476 |
Zhanjiang Port | 0.101 | 0.033 |
Shantou Port | 0.040 | 0.042 |
Shenzhen Port | 0.353 | 0.351 |
Beihai Port | 0.018 | 0.001 |
Fangchenggang Port | 0.074 | 0.077 |
Qinzhou Port | 0.077 | 0.074 |
Component | Qh2 | Critical Value | RX2 | RY2 |
---|---|---|---|---|
1 | 0.931 | 0.0975 | 0.665 | 0.938 |
2 | −0.036 | 0.0975 | 0.090 | 0.007 |
Variable | Coefficient |
---|---|
0.171 *** | |
0.165 *** | |
0.179 *** | |
0.177 *** | |
0.117 *** | |
0.155 *** | |
0.065 *** | |
0.120 *** | |
R2 | 0.938 |
Variable | Coefficient | |||
---|---|---|---|---|
0.326 *** | ||||
0.319 *** | ||||
0.332 *** | ||||
0.333 *** | ||||
0.223 *** | 0.226 *** | 0.217 *** | 0.221 *** | |
0.296 *** | 0.300 *** | 0.288 *** | 0.293 *** | |
0.124 *** | 0.126 *** | 0.121 *** | 0.123 *** | |
0.228 *** | 0.231 *** | 0.222 *** | 0.226 *** | |
R2 | 0.869 | 0.861 | 0.873 | 0.879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Huang, Y.; Yang, F.; Li, Y.; Fang, Y.; Fu, R. Evaluation of Port–Hinterland Synergy Level Considering Fixed Asset Allocation and Social Commodity Circulation under the “Dual Circulation” Development Pattern. J. Mar. Sci. Eng. 2022, 10, 1476. https://doi.org/10.3390/jmse10101476
Li Z, Huang Y, Yang F, Li Y, Fang Y, Fu R. Evaluation of Port–Hinterland Synergy Level Considering Fixed Asset Allocation and Social Commodity Circulation under the “Dual Circulation” Development Pattern. Journal of Marine Science and Engineering. 2022; 10(10):1476. https://doi.org/10.3390/jmse10101476
Chicago/Turabian StyleLi, Zhaohui, Yujin Huang, Fan Yang, Yi Li, Yan Fang, and Rui Fu. 2022. "Evaluation of Port–Hinterland Synergy Level Considering Fixed Asset Allocation and Social Commodity Circulation under the “Dual Circulation” Development Pattern" Journal of Marine Science and Engineering 10, no. 10: 1476. https://doi.org/10.3390/jmse10101476
APA StyleLi, Z., Huang, Y., Yang, F., Li, Y., Fang, Y., & Fu, R. (2022). Evaluation of Port–Hinterland Synergy Level Considering Fixed Asset Allocation and Social Commodity Circulation under the “Dual Circulation” Development Pattern. Journal of Marine Science and Engineering, 10(10), 1476. https://doi.org/10.3390/jmse10101476