Progress on Offshore Wind Farm Dynamic Wake Management for Energy
Abstract
:1. Introduction
2. Wake Effect
2.1. Wake Effect and Wind Energy
2.2. Wake Model
2.3. Application of Wind Estimation in Wake Model
3. Dynamic OWF Control
3.1. Axial Induction-Based Control
3.2. Yaw-Based Wake Redirection
Reference | Method | Input | Streamwise Spacing | Wake Model | Power Gain |
---|---|---|---|---|---|
Goit and Meyers [92] | Centralized receding horizon optimal control | CT | 7D | Dynamic LES | 15.8% |
Munters and Meyers [35] | Centralized receding horizon optimal control | CT | 6D | Dynamic LES | 15% |
Vali et al. [93,94] | Centralized adjoint-based model predictive control | a | 5D | Dynamic WFSim | 23.59% |
Van et al. [95] | Lookup table for optimal blade pitch angle settings | β | 2.3~3.1D | FarmFlow | 3.3% |
Marden et al. [96] | game-theoretic control | a | 5D | Model-free | 34.05% |
Gebraad et al. [97] | Maximum tracking control | a | 5D | Model-free | 4% |
Yang et al. [98] | Nested ring extremum search control | Torque gain | 5D | Model-free | 1.3%; 9.09%; 0.55% |
Wu et al. [99] | Delay compensation nested loop extremum search control | Torque gain | 5D | Model-free | 0.72%; 0.34%. |
Gebraad et al. [66] | Optimization of game theory | γ | 5D | FLORIS | 13% |
Fleming et al. [96] | Lookup table for optimal yaw settings | γ | 7D | FLORIS | 7.7% |
Gebraad et al. [67] | Nonlinear model predictive control using extensive grid search | γ | 5D | FLORIDyn | 0.19% |
Munters and Meyers [35] | Combination of backward level and continuous adjoint gradient evaluation | γ | 6D | Dynamic LES | 21% |
Ciri et al. [107] | Nested extremum optimization algorithm | γ | 5D | Dynamic LES | 7% (rotor diameter of 126 m); 3% (rotor diameter of 27 m) |
3.3. Repositioning
3.4. Remaining Issues
4. Suggestion of Digital Twins on OWTs
4.1. Introduction of Digital Twins
4.2. Recommendations for DT Application to OWF Dynamic Wake Management
5. Conclusions and Recommended Future Research Directions
- (1)
- Correction of dynamic wake model: Accurate wake information is of great importance for wind farm wake control, especially the wake center position and wind direction. The dynamic wake model can be corrected by using wind estimation, and there are already many effective wind-estimation methods. However, studies combining wind estimation and wind farm control remain the focus of future research.
- (2)
- Repositioning of floating wind farms: In the control of floating wind farms, repositioning of wind turbines has great potential to alleviate wake interference, but it poses great challenges to the stability of the floating wind turbine and the reliability of winches and mooring lines. In addition, there is little research in this area. This may be one of the key considerations for floating wind farm repositioning control in the future.
- (3)
- Consideration of time-varying wind direction: Although many wind farm control methods have achieved good results, they are obtained without considering time-varying wind direction. The effect will be greatly reduced when considering the simulation or measurement of time-varying wind direction. Therefore, the way to deal with this challenge needs to be considered in future wind farm control.
- (4)
- Application of machine learning, AI and MCDM in wind farm dynamic wake control: In the future, machine learning, AI and MDCM will have great potential in the application of wind farms, but their applicability in actual dynamic wake management needs more research.
- (5)
- DT technology application: Although there have been studies on the application of DT technology in the operation and maintenance and fault diagnosis of wind farms [132], there may be a high requirement for the calculation speed of DT virtual model aimed at real-time dynamic control of wind farms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Soares-Ramos, E.P.P.; Oliveira-Assis, L.D.; Sarrais-Mena, R.; Fernández-Ramírez, L.M. Current status and future trends of offshore wind power in Europe. Energy 2020, 202, 117787. [Google Scholar] [CrossRef]
- Hossen, M.D.; Islam, M.F.; Ishraque, M.F.; Shezan, S.A.; Arifuzzaman, S.M. Design and Implementation of a Hybrid Solar-Wind-Biomass Renewable Energy System considering Meteorological Conditions with the Power System Performances. Int. J. Photoenergy 2022, 2022, 8792732. [Google Scholar] [CrossRef]
- Ishraque, M.F.; Shezan, S.A.; Rana, M.S.; Muyeen, S.M.; Rahman, A.; Paul, L.C.; Islam, M.S. Optimal sizing and assessment of a renewable rich standalone hybrid microgrid considering conventional dispatch methodologies. Sustainability 2021, 13, 12734. [Google Scholar] [CrossRef]
- Shezan, S.A.; Ishraque, M.F.; Muyeen, S.M.; Abu-Siada, A.; Saidur, R.; Ali, M.M.; Rashid, M.M. Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strategy Rev. 2022, 43, 100923. [Google Scholar] [CrossRef]
- Shezan, S.A.; Ishraque, M.F.; Muyeen, S.M.; Arifuzzaman, S.M.; Paul, L.C.; Das, S.K.; Sarker, S.K. Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid. Energy Convers. Manag. X 2022, 14, 100192. [Google Scholar] [CrossRef]
- Costoya, X.; Decastro, M.; Carvalho, D.; Feng, Z.; Gómez-Gesteira, M. Climate change impacts on the future offshore wind energy resource in China. Renew. Energy 2021, 175, 731–747. [Google Scholar] [CrossRef]
- Global Wind Report 2022. Available online: https://gwec.net/global-wind-report-2022/ (accessed on 4 April 2022).
- Statistical Review of World Energy 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 12 June 2022).
- Li, J.; Wang, G.; Li, Z.; Yang, S.; Chong, W.T.; Xiang, X. A review on development of offshore wind energy conversion system. Int. J. Energy Res. 2020, 44, 9283–9297. [Google Scholar] [CrossRef]
- Díaz, H.; Soares, C.G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Lian, J.; Cai, O.; Dong, X.; Jiang, Q.; Zhao, Y. Health monitoring and safety evaluation of the offshore wind turbine structure: A review and discussion of future development. Sustainability 2019, 11, 494. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lee, C.Y.; Chen, C.R.; Hsu, K.W.; Tseng, H.T. Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology. IEEE Trans. Ind. Appl. 2013, 50, 2071–2080. [Google Scholar] [CrossRef]
- Mehmanparast, A.; Vidament, A. An accelerated corrosion-fatigue testing methodology for offshore wind applications. Eng. Struct. 2021, 240, 112414. [Google Scholar] [CrossRef]
- Cevasco, D.; Koukoura, S.; Kolios, A.J. Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications. Renew. Sustain. Energy Rev. 2021, 136, 110414. [Google Scholar] [CrossRef]
- Blanco, M.I. The economics of wind energy. Renew. Sustain. Energy Rev. 2009, 13, 1372–1382. [Google Scholar] [CrossRef]
- Jansen, M.; Staffell, I.; Kitzing, L.; Quoilin, S.; Wiggelinkhuizen, E.; Bulder, B.; Müsgens, F. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 2020, 5, 614–622. [Google Scholar] [CrossRef]
- Neves-Moreira, F.; Veldman, J.; Teunter, R.H. Service operation vessels for offshore wind farm maintenance: Optimal stock levels. Renew. Sustain. Energy Rev. 2021, 146, 111158. [Google Scholar] [CrossRef]
- Seeking, R.J.; Li, Y.; Teuwen, J.J.E.; Jiang, Z. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 144, 110886. [Google Scholar]
- Florian, M.; Srensen, J.D. Risk-based planning of operation and maintenance for offshore wind farms. Energy Procedia 2017, 137, 261–272. [Google Scholar] [CrossRef]
- Sun, X.; Huang, D.; Wu, G. The current state of offshore wind energy technology development. Energy Convers. Manag. 2012, 41, 298–312. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, Y.; Wang, H.; Mesbahi, A.; Jeong, B.; Zhou, P. Levelised cost of energy analysis for offshore wind farms—A case study of the New York State development. Ocean Eng. 2021, 239, 109923. [Google Scholar] [CrossRef]
- Dicorato, M.; Forte, G.; Pisani, M.; Trovato, M. Guidelines for assessment of investment cost for offshore wind generation. Renew. Energy 2011, 36, 2043–2051. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Krogstad, P.A. Experimental investigation of wake effects on wind turbine performance. Renew. Energy 2011, 36, 2078–2086. [Google Scholar] [CrossRef]
- Nilsson, K.; Ivanell, S.; Hansen, K.S.; Mikkelsen, R.; Dan, H. Large-eddy simulations of the Lillgrund wind farm. Wind Energy 2015, 18, 449–467. [Google Scholar] [CrossRef]
- Kumar, J.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- Chang, T.J.; Hsu, H.Y.; Chu, C.R.; Liao, C.M. Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renew. Energy 2003, 28, 851–871. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.H.; Soltani, M.; Chen, C.; Chen, Z. Combined optimization for offshore wind turbine micro siting. Appl. Energy 2017, 189, 271–282. [Google Scholar] [CrossRef]
- Tao, S.Y.; Kuenzel, S.; Xu, Q.S.; Chen, Z. Optimal micro-siting of wind turbines in an offshore wind farm using Frandsen–Gaussian wake model. IEEE Trans. Power Syst. 2019, 34, 4944–4954. [Google Scholar] [CrossRef]
- Sorensen, J.N.; Shen, W.Z. Numerical modeling of wind turbine wakes. J. Fluids Eng. 2002, 124, 393–399. [Google Scholar] [CrossRef]
- Mikel, D.P.G.; César, G.A.; Andreas, S.A.A. Maximum wind power plant generation by reducing the wake effect. Energy Convers. Manag. 2015, 101, 73–84. [Google Scholar]
- Elkinton, C.N.; Manwell, J.F.; McGowan, J.G. Algorithms for offshore wind farm layout optimization. Wind Energy 2008, 32, 67–84. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lu, L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Kumar, D.; Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 2016, 55, 957–970. [Google Scholar] [CrossRef]
- Knudsen, T.; Bak, T.; Svenstrup, M. Survey of wind farm control—power and fatigue optimization. Wind Energy 2015, 18, 1333–1351. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization. Energies 2018, 11, 177. [Google Scholar] [CrossRef]
- Azlan, F.; Kurnia, J.C.; Tan, B.T.; Ismadi, M.Z. Review on optimisation methods of wind farm array under three classical wind condition problems. Renew. Sustain. Energy Rev. 2021, 135, 110047. [Google Scholar] [CrossRef]
- Markus, L.; Mikel, D.P.G.; Climent, M. A metaheuristic optimization model for the inter-array layout planning of floating offshore wind farms. Int. J. Electr. Power Energy Syst. 2021, 131, 107–128. [Google Scholar]
- Vermeer, N.J.; Sørensen, J.; Crespo, A. wind turbine wake aerodynamics. Prog. Aeronaut. Sci. 2003, 39, 467–510. [Google Scholar] [CrossRef]
- Fischetti, M. On the optimized design of next-generation wind farms. Eur. J. Oper. Res. 2021, 291, 862–870. [Google Scholar] [CrossRef]
- Kheirabadi, A.C.; Nagamune, R. Real-time relocation of floating offshore wind turbine platforms for wind farm efficiency maximization: An assessment of feasibility and steady-state potential. Ocean Eng. 2020, 208, 107445. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Babu, T.S.; Subramaniam, U.; Sudhakar, N.; Sichilalu, S. A novel review on optimization techniques used in wind farm modelling. Renew. Energy Focus 2020, 35, 84–96. [Google Scholar] [CrossRef]
- Nasim, D.; Amin, N.; Abdollah, A. Wind farm power output optimization using cooperative control methods. Wind Energy 2021, 24, 502–514. [Google Scholar]
- Yin, X.; Zhang, W.; Jiang, Z.; Pan, L. Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization. Renew. Energy 2020, 160, 974–986. [Google Scholar] [CrossRef]
- Leba, M.; Pop, E.; Tabacaru-Barbu, C.; Pop, E. Modeling, simulation and control of wind turbine. In Proceedings of the 4th WSEAS/IASME International Conference on dynamical systems and control, Corfu, Greece, 26–28 October 2008. [Google Scholar]
- Raach, S.; Boersma, S.; Wingerden, J.W.V.; Schlipf, D.; Cheng, P.W. Robust lidar-based closed-loop wake redirection for wind farm control. IFAC PapersOnLine 2017, 50, 4498–4503. [Google Scholar] [CrossRef]
- Kheirabadi, A.C.; Nagamune, R. A quantitative review of wind farm control with the objective of wind farm power maximization. J. Wind Eng. Ind. Aerod. 2019, 192, 45–73. [Google Scholar] [CrossRef]
- Göçmen, T.; Van der Laan, P.; Réthoré, P.E.; Diaz, A.P.; Larsen, G.C.; Ott, S. Wind turbine wake models developed at the technical university of Denmark: A review. Renew. Sustain. Energy Rev. 2016, 60, 752–769. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.K.; Triantafyllou, P.; Stinis, P. Critical evaluation of wind turbines’ analytical wake models. Renew. Sustain. Energy Rev. 2021, 144, 110991. [Google Scholar] [CrossRef]
- De Kooning, J.D.; Stockman, K.; De Maeyer, J.; Jarquin-Laguna, A.; Vandevelde, L. Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load. Processes 2021, 9, 2224. [Google Scholar] [CrossRef]
- Macrí, S.; Aubrun, S.; Leroy, A.; Girard, N. Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers. Wind Energy Sci. 2021, 6, 585–599. [Google Scholar] [CrossRef]
- Eltayesh, A.; Castellani, F.; Burlando, M.; Hanna, M.B.; Huzayyin, A.S.; El-Batsh, H.M.; Becchetti, M. Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine. Alex. Eng. J. 2021, 60, 3931–3944. [Google Scholar] [CrossRef]
- Annoni, J.; Gebraad, P.M.O.; Scholbrock, A.K.; Fleming, P.A.; van Wingerden, J.W. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model. Wind Energy 2016, 19, 1135–1150. [Google Scholar] [CrossRef]
- Shakoor, R.; Hassan, M.Y.; Raheem, A.; Wu, Y.K. Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model. Renew. Sustain. Energy Rev. 2016, 58, 1048–1059. [Google Scholar] [CrossRef]
- Laursen, T.K.; Sivabalan, S.; Borchersen, A.B.; Larsen, J.A. Wake-effect minimising optimal control of wind farms, with load reduction. IFAC Proc. Vol. 2014, 47, 6770–6775. [Google Scholar] [CrossRef]
- Zhang, M.M.; Tan, B.; Xu, J.Z. Smart load control of the large-scale offshore wind turbine blades subject to wake effect. Sci. Bull. 2015, 60, 1680–1687. [Google Scholar] [CrossRef]
- Vasilis, A.; Riziotis, S.G.V. Fatigue loads on wind turbines of different control strategies operating in complex terrain. J. Wind Eng. Ind. Aerod. 2000, 85, 211–240. [Google Scholar]
- Kang, J.C.; Sun, L.P.; Guedes Soares, C. Fault tree analysis of floating offshore wind turbines. Renew. Energy 2019, 133, 1455–1467. [Google Scholar] [CrossRef]
- Howland, M.F.; Bossuyt, J.; Martínez-Tossas, L.A.; Meyers, J.; Meneveau, C. Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions. J. Renew. Sustain. Energy 2016, 8, 043301. [Google Scholar] [CrossRef] [Green Version]
- Bartl, J.; Sætran, L. Blind test comparison of the performance and wake flow between two in-line wind turbines exposed to different turbulent inflow conditions. Wind Energy Sci. 2017, 2, 55–76. [Google Scholar] [CrossRef]
- Sanderse, B.; an der Pijl, S.P.; Koren, B. Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 2011, 14, 799–819. [Google Scholar] [CrossRef]
- Boersma, S.; Doekemeijer, B.M.; Gebraad, P.M.O.; Fleming, P.A.; Wingerden, J.W.V. A tutorial on control-oriented modeling and control of wind farms. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017. [Google Scholar]
- Bashetty, S.; Ozcelik, S. Review on Dynamics of Offshore Floating Wind Turbine Platforms. Energies 2021, 14, 6026. [Google Scholar] [CrossRef]
- Triantafyllou, P.; Kaldellis, J.K. Wind turbine wake models’ evaluation for different downstream locations. Renew. Energy Environ. Sustain. 2021, 6, 40. [Google Scholar] [CrossRef]
- Pinti, O.; Oberai, A.A.; Healy, R.; Niemiec, R.J.; Gandhi, F. Multi-Fidelity Approach to Predicting Multi-Rotor Aerodynamic Interactions. AIAA.J 2022, 60, 3894–3908. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Shen, W.; Song, Y.; Zhao, N. Prediction of multi-wake problems using an improved Jensen wake model. Renew. Energy 2017, 102, 457–469. [Google Scholar] [CrossRef]
- Gebraad, P.M.; Teeuwisse, F.; van Wingerden, J.W.; Fleming, P.A.; Ruben, S.D.; Marden, J.R.; Pao, L.Y. A data-driven model for wind plant power optimization by yaw control. In Proceedings of the American Control Conference (ACC), Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Gebraad, P.M.O.; Teeuwisse, F.W.; van Wingerden, J.W.; Fleming, P.A.; Ruben, S.D.; Marden, J.R.; Pao, L.Y. Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study. Wind Energy 2016, 19, 95–114. [Google Scholar] [CrossRef]
- Gebraad, P.M.O.; van Wingerden, J.W. A control-oriented dynamic model for wakes in wind plants. J. Phys. Conf. Ser. 2014, 524, 012186. [Google Scholar] [CrossRef]
- Kheirabadi, A.C.; Nagamune, R. Modeling and power optimization of floating offshore wind farms with yaw and induction-based turbine repositioning. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019. [Google Scholar]
- Churchfield, M.J.; Lee, S.; Michalakes, J.; Moriarty, P.J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul. 2012, 13, N14. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Churchfield, M.J.; Leonardi, S. Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling. Wind Energy 2015, 18, 1047–1060. [Google Scholar] [CrossRef]
- Hansen, J.T.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach. Renew. Energy 2021, 171, 1371–1381. [Google Scholar]
- Boersma, S.; Doekemeijer, B.; Vali, M.; Meyers, J.; van Wingerden, J.W. A control-oriented dynamic wind farm model: WFSim. Wind Energy 2018, 3, 75–95. [Google Scholar] [CrossRef]
- Larsen, T.J.; Madsen, H.A.; Larsen, G.C.; Hansen, K.S. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy 2013, 16, 605–624. [Google Scholar] [CrossRef]
- Shaler, K.; Jonkman, J. FAST. Farm development and validation of structural load prediction against large eddy simulations. Wind Energy 2021, 24, 428–449. [Google Scholar] [CrossRef]
- Shaler, K.; Debnath, M.; Jonkman, J. Validation of FAST. farm against full-scale turbine SCADA data for a small wind farm. J. Phys. Conf. Ser. 2021, 1618, 062061. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhao, X.W. A novel dynamic wind farm wake model based on deep learning. Appl. Energy 2020, 277, 115552. [Google Scholar] [CrossRef]
- Manohar, K.; Brunton, B.W.; Kutz, J.N.; Brunton, S.L. Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 2018, 38, 63–86. [Google Scholar]
- Ali, N.; Calaf, M.; Cal, R.B. Clustering sparse sensor placement identification and deep learning-based forecasting for wind turbine wakes. J. Renew. Sustain. Energy 2021, 13, 023307. [Google Scholar] [CrossRef]
- Geibel, M.; Bangga, G. Data Reduction and Reconstruction of Wind Turbine Wake Employing Data Driven Approaches. Energies 2022, 15, 3773. [Google Scholar] [CrossRef]
- Campagnolo, F.; Schreiber, J.; Garcia, A.M.; Bottasso, C.L. Wind tunnel validation of a wind observer for wind farm control. In Proceedings of the 27th International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017. [Google Scholar]
- Hau, E. Wind Turbines: Fundamentals, Technologies, Application, Economics; Springer Science & Business Media: New York, NY, USA, 2013; Volume 3, pp. 58–68. [Google Scholar]
- Annoni, J.; Bay, C.; Johnson, K.; Dall’Anese, E.; Quon, E.; Kemper, T.; Fleming, P. Wind direction estimation using SCADA data with consensus-based optimization. Wind Energy Sci. 2019, 4, 355–368. [Google Scholar] [CrossRef]
- Bottasso, C.; Cacciola, S.; Schreiber, J. Local wind speed estimation, with application to wake impingement detection. Renew. Energy 2018, 116, 155–168. [Google Scholar] [CrossRef]
- Yan, C. Wind Turbine Wakes: From Numerical Modeling to Machine Learning. Doctoral Thesis, University of Delaware, Newark, NJ, USA, 2018. [Google Scholar]
- Doekemeijer, B.M.; Boersma, S.; Pao, L.Y.; Knudsen, T.; van Wingerden, J.W. Online model calibration for a simplified LES model in pursuit of real-time closed-loop wind farm control. Wind Energy Sci. 2018, 3, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Gebraad, P.; Fleming, P.A.; van Wingerden, J.W. Wind turbine wake estimation and control using FLORIDyn, a control-oriented dynamic wind plant model. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015. [Google Scholar]
- Hofmann, M.; Sperstad, I.B. Will 10 MW wind turbines bring down the operation and maintenance cost of offshore wind farms. Energy Procedia 2014, 53, 231–238. [Google Scholar] [CrossRef]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Bartl, J.; Sætran, L. Experimental testing of axial induction-based control strategies for wake control and wind farm optimization. J. Phys. Conf. Ser. 2016, 753, 032035. [Google Scholar] [CrossRef]
- Deepu, D.; Fernando, P.A. Wind turbine wake mitigation through blade pitch offset. Energies 2017, 10, 757. [Google Scholar]
- Goit, J.P.; Meyers, J. Optimal control of energy extraction in wind-farm boundary layers. J. Fluid Mech. 2015, 768, 5–50. [Google Scholar] [CrossRef]
- Vali, M.; Petrović, V.; Boersma, S.; van Wingerden, J.W.; Kühn, M. Adjoint-based model predictive control of wind farms: Beyond the quasi steady-state power maximization. IFAC Papers OnLine 2017, 50, 4510–4515. [Google Scholar] [CrossRef]
- Vali, M.; Petrović, V.; Boersma, S.; van Wingerden, J.W.; Pao, L.Y.; Kühn, M. Adjoint-based model predictive control for optimal energy extraction in waked wind farms. Control Eng. Pract. 2019, 84, 48–62. [Google Scholar] [CrossRef]
- van der Hoek, D.; Kanev, S.; Allin, J.; Bieniek, D.; Mittelmeier, N. Effects of axial induction control on wind farm energy production-a field test. Renew. Energy 2019, 140, 994–1003. [Google Scholar] [CrossRef]
- Marden, J.R.; Ruben, S.D.; Pao, L.Y. A model-free approach to wind farm control using game theoretic methods. IEEE Trans. Control Syst. Technol. 2013, 21, 1207–1214. [Google Scholar] [CrossRef]
- Gebraad, P.M.O.; van Dam, F.C.; Wingerden, J.W.V. A model-free distributed approach for wind plant control. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 628–633. [Google Scholar]
- Yang, Z.; Li, Y.; Seem, J.E. Optimizing energy capture of cascaded wind turbine array with nested-loop extremum seeking control. J. Dyn. Syst. Meas. Control 2015, 137, 121010. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Li, Y.Y. Real-time optimization of wind farm energy capture with delay compensated nested-loop extremum seeking control. In Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA, 11–13 October 2017; p. 5262. [Google Scholar]
- Zhong, S.; Wang, X. Decentralized model-free wind farm control via discrete adaptive filtering methods. IEEE Trans. Smart Grid 2016, 9, 2529–2540. [Google Scholar] [CrossRef]
- Jiménez, Á.; Crespo, A.; Migoya, E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy 2010, 13, 559–572. [Google Scholar] [CrossRef]
- Fleming, P.A.; Gebraad, P.M.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield, M.; Michalakes, J.; Spalart, P.; Moriarty, P. Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy 2014, 70, 211–218. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Fleming, P.; Bulder, B.; White, S.M. Wind turbine wake-redirection control at the fishermen’s Atlantic City windfarm. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015. [Google Scholar]
- Archer, C.L.; Vasel-Be-Hagh, A. Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation. Sustain. Energy Technol. 2019, 33, 34–43. [Google Scholar] [CrossRef]
- Fleming, P.A.; Ning, A.; Gebraad, P.M.; Dykes, K. Wind plant system engineering through optimization of layout and yaw control. Wind Energy 2016, 19, 329–344. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. Optimal dynamic induction and yaw control of wind farms: Effects of turbine spacing and layout. J. Phys. Conf. Ser. 2018, 1037, 032015. [Google Scholar] [CrossRef]
- Ciri, U.; Rotea, M.A.; Leonardi, S. Effect of the turbine scale on yaw control. Wind Energy 2018, 21, 1395–1405. [Google Scholar] [CrossRef]
- Cossu, C. Wake redirection at higher axial induction. Wind Energy Sci. 2021, 6, 377–388. [Google Scholar] [CrossRef]
- Froese, G.; Ku, S.Y.; Kheirabadi, A.C.; Nagamune, R. Optimal layout design of floating offshore wind farms. Renew. Energy 2022, 190, 94–102. [Google Scholar] [CrossRef]
- Arshad, M.; O’Kelly, B.C. Offshore wind-turbine structures: A review. Proc. Inst. Civ. Eng. Energy 2013, 166, 139–152. [Google Scholar] [CrossRef]
- Fleming, P.; Gebraad, P.M.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield, M.; Michalakes, J.; Spalart, P.; Moriarty, P. Simulation comparison of wake mitigation control strategies for a two-turbine case. Wind Energy 2015, 18, 2135–2143. [Google Scholar] [CrossRef]
- Rodrigues, S.F.; Pinto, R.T.; Soleimanzadeh, M.; Bosman, P.A.; Bauer, P. Wake losses optimization of offshore wind farms with moveable floating wind turbines. Energy Convers. Manag. 2015, 89, 933–941. [Google Scholar] [CrossRef]
- Han, C.; Homer, J.R.; Nagamune, R. Movable range and position control of an offshore wind turbine with a semi-submersible floating platform. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017. [Google Scholar]
- Maheswari, M.V.U.; Rao, P.R.; Kumar, S.J. Tracking Maximum Power Point of a Grid-Connected DFIG Wind Turbine Systems Using AI and Evolutionary Controllers. In Proceedings of the Symposium on Power Electronic and Renewable Energy Systems Control: PERESC, Online, 4–5 December 2020; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 616, p. 261. [Google Scholar]
- Yang, S.; Deng, X.; Ti, Z.; Yan, B.; Yang, Q. Cooperative yaw control of wind farm using a double-layer machine learning framework. Renew. Energy 2022, 193, 519–537. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K.; Yadav, S.S.; Kumar, G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US air force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Defraeye, T.; Tagliavini, G.; Wu, W.; Prawiranto, K.; Schudel, S.; Kerisima, M.A.; Verboven, P.; Bühlmann, A. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resour. Conserv. Recycl. 2019, 149, 778–794. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the integration of agents and digital twins in healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef]
- Stark, R.; Fresemann, C.; Lindow, K. Development and operation of digital twins for technical systems and services. CIRP Ann. Manuf. Technol. 2019, 68, 129–132. [Google Scholar] [CrossRef]
- Canedo, A. Industrial IoT lifecycle via digital twins. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, New York, NY, USA, 1–7 October 2016. [Google Scholar]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Hou, L.; Wu, S.; Zhang, G.K.; Tan, Y.; Wang, X. Literature review of digital-twins applications in construction workforce safety. Appl. Sci. 2021, 11, 339. [Google Scholar] [CrossRef]
- Pargmann, H.; Euhausen, D.; Faber, R. Intelligent big data processing for wind farm monitoring and analysis based on cloud-technologies and digital twins: A quantitative approach. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 20–22 April 2018. [Google Scholar]
- Mi, S.; Feng, Y.; Zheng, H.; Wang, Y.; Gao, Y.; Tan, J. Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework. J. Manuf. Syst. 2021, 58, 329–345. [Google Scholar] [CrossRef]
- Jaensch, F.; Csiszar, A.; Scheifele, C.; Verl, A. Digital twins of manufacturing systems as a base for machine learning. In Proceedings of the 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart, Germany, 20–22 November 2018. [Google Scholar]
- Chakraborty, S.; Adhikari, S. Machine learning based digital twin for dynamical systems with multiple time-scales. Comput. Struct. 2021, 243, 106410. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Son, E.; Lee, S.; Lee, S. Aerodynamic noise analysis of large horizontal axis wind turbines considering fluid–structure interaction. Renew. Energy 2012, 42, 46–53. [Google Scholar] [CrossRef]
- Shaler, K.; Jonkman, J.; Doubrawa Moreira, P.; Hamilton, N. FAST. Farm Response to Varying Wind Inflow Techniques; National Renewable Energy Lab: Golden, CO, USA, 2019. [Google Scholar]
- Kretschmer, M.; Jonkman, J.; Pettas, V.; Cheng, P.W. FAST. Farm load validation for single wake situations at alpha ventus. Wind Energy Sci. 2021, 6, 1247–1262. [Google Scholar] [CrossRef]
- Ospina-Bohórquez, A.; López-Rebollo, J.; Muñoz-Sánchez, P.; González-Aguilera, D. A Digital Twin for Monitoring the Construction of a Wind Farm. Eng. Proc. 2022, 17, 3. [Google Scholar]
Model | Time | Computing Speed | Fluid Details | Fidelity |
---|---|---|---|---|
DWM | 2007 | medium | yes | medium |
SOWFA | 2012 | slow | yes | high |
FLORIDyn | 2014 | fast | no | low |
SP-Wind | 2015 | slow | yes | high |
WFSim | 2016 | medium | yes | medium |
STAR-CCM+ | 2018 | slow | yes | high |
DLDWM | 2020 | fast | yes | high |
Bi-LSTM | 2020 | fast | yes | high |
CBML | 2022 | fast | yes | high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Xue, L.; Li, Z.; Wang, J.; Yang, Z.; Xue, Y. Progress on Offshore Wind Farm Dynamic Wake Management for Energy. J. Mar. Sci. Eng. 2022, 10, 1395. https://doi.org/10.3390/jmse10101395
Zhao L, Xue L, Li Z, Wang J, Yang Z, Xue Y. Progress on Offshore Wind Farm Dynamic Wake Management for Energy. Journal of Marine Science and Engineering. 2022; 10(10):1395. https://doi.org/10.3390/jmse10101395
Chicago/Turabian StyleZhao, Liye, Lei Xue, Zhiqian Li, Jundong Wang, Zhichao Yang, and Yu Xue. 2022. "Progress on Offshore Wind Farm Dynamic Wake Management for Energy" Journal of Marine Science and Engineering 10, no. 10: 1395. https://doi.org/10.3390/jmse10101395