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Abstract: The wake management of offshore wind farms (OWFs) mainly considers the wake effect.
Wake effects commonly occur in offshore wind farms, which cause a 5–10% reduction in power
production. Although there have been many studies on wake management, many methods are not
accurate enough; for instance, look-up table and static wake model control methods do not consider
the time-varying wake state. Dynamic wake management is based on the real-time dynamic wake,
so it can increase the energy of the OWFs effectively. For OWFs, dynamic wake control is the main
method of dynamic wake management. In this paper, the existing wake model and control progress
are discussed, mainly emphasizing the dynamic wake model and the dynamic wake control method,
solving the gap of the review for dynamic wake management. This paper presents a digital twins
(DT) framework for power and fatigue damage for the first time.. The structure of this paper is as
follows: (1) the mechanism of wind farm wake interference is described and then the dynamic wake
model is reviewed and summarized; (2) different control methods are analyzed and the dynamic
wake management strategies for different control methods are reviewed; (3) in order to solve the
problems of dynamic wake detection and real-time effective control, the technology of DT is applied
to the dynamic wake control of OWFs. This new DT frame has a promising application prospect in
improving power and reducing fatigue damage.

Keywords: offshore wind farm; dynamic wake management; wake model; energy maximization;
digital twins

1. Introduction

In 2020, countries such as the United States and China as well as some of the European
Union, which account for two-thirds of the global economy, are responsible for 63% of
global greenhouse gas emissions per year; they have made a commitment to net-zero
carbon neutrality [1]. In order to achieve the goal of net-zero carbon emissions and in
response to soaring oil and gas prices, it is imperative to complete the transformation
from fossil fuels to renewable and sustainable energy. Many scholars have carried out
in-depth research on comprehensive energy [2–5], among which wind energy is the most
promising energy type. Although the wind power incentive policies of some countries
are weakening, the installed capacity of wind power is still on the rise [6]. Wind energy
currently accounts for 9% of the world’s electricity and only 20% of the world’s total energy
consumption. It is a promising energy-consumption method. According to the statistics
of Global Wind Energy Development Report 2022 [7] released by the Global Wind Energy
Council (GWEC), the newly installed capacity of global wind turbines was about 93.6 GW
in 2021, and the cumulative global wind power capacity has reached 837 GW, as shown
in Figure 1. According to the International Energy Agency, wind energy will account for
35% (8174 GW) of total energy by 2050 [8]. The newly added installed capacity of offshore
wind turbines (OWTs) had a record year with more than 21 GW of grid-connected offshore
energy generation, and the total installed capacity of OWTs exceeded 57 GW, accounting
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for 6.8% of the total installed capacity of wind power in the world. Compared with onshore
wind power, offshore wind power (OWP) has longer available hours [9,10], proximity
to coastal areas with strong demand for electricity, distance from residential areas, and
no occupation of land resources. Due to these advantages, OWP has better prospects in
comparison to onshore wind power.
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However, there are still many constraints on the development of OWP, which make
offshore wind uncompetitive. The reasons are as follows: firstly, the construction cost of
offshore wind farms (OWFs) is more than onshore wind farms, owing to more complex
construction [11,12], a more severe environment (marine) [13], high requirements for equip-
ment material load and corrosion protection, and expensive materials and structures [14];
Secondly, OWF has high operation and maintenance (O&M) costs [15,16], a high failure
rate due to high salt spray and humidity, a limited window for offshore operations, high
rental costs of O&M vessels, and high maritime safety risks [17–19]. Despite the continu-
ous optimization of OWT designs [20], the OWP Levelized Cost of Energy (LCOE, which
represents the average lifecycle price per MWh of electricity generation for a given energy
source) [21] has decreased to approximately 47% over ten years (2009 to 2019) [18,22]. One
of the ways to improve the competitiveness of OWP is to increase the power generation [23].
The wake of the wind farm threatens the reliability of the wind turbine, causing a loss of
up to 54% [24]. Mitigating wake effects has great potential to improve the power efficiency
of OWT [25,26].

There are three main approaches to mitigate wake effects, including wind farm sit-
ing [27–30], layout optimization [12,31,32], and wind farm operation control [33–35]. A
sensible wind farm site and layout can reduce the interference of the wake effect [36,37].
However, the siting and layout of wind farms are complex and need to be integrated with
various factors, so it is very difficult to make a completely reasonable solution for wind
farms; the distance between the wind turbines cannot be idealized, so the wake interference
between OWTs is inevitable [38]. For non-floating wind farms that have been built, the
siting and layout cannot be optimized [39–41]. Different from the above two methods,
controlling the degrees of freedom of wind turbines [35,42] reduces the influence of the
wake effect [43,44], and the power generation can be improved with fewer constraints and
high feasibility [45].

There have been many analyses and reviews of wake management methods and
wake models. For example, Kheirabadi et al. [46] conducted a summary and quantitative
analysis of reducing wake interferences for wind farm power maximization and evalu-
ated the effectiveness of the strategies; Gokman et al. [47] evaluated the wake modelling
method developed by the Technical University of Denmark; Kaldellis et al. [48] conducted
a comprehensive comparison of nine well-established wake models and demonstrated their



J. Mar. Sci. Eng. 2022, 10, 1395 3 of 20

accuracy. To meet the needs of online dynamic wake control, it is necessary to evaluate and
compare dynamic wake models and control methods. However, no one has analyzed the
control methods of dynamic wake for power maximization systematically. The paper’s
purpose is to judge the practicability of dynamic wake models and control methods in the
existing literature by analyzing and comparing, and to provide engineers and researchers
with a practical introduction to wind farm dynamic wake models and control methods
by presenting a review of the progress. Digital twin (DT) technology is considered as a
promising tool [49]; a virtual model can be used to make up for a lack of some sensors, and
in this paper, a new DT framework for dynamic wake management is proposed for the
first time to control wind farm power and fatigue damage, but the possibility of DT-based
dynamic wake control needs to be studied further in future.

Section 2 reviews the influence mechanism of the wake effect and wake models. Section 3
introduces the research status of wind farm power improvement methods. Section 4 intro-
duces a new DT framework of OWF dynamic wake management. Section 5 presents the
conclusion of this paper.

2. Wake Effect

In this section, the wake effect is described, the required wake models for wind farm
control are analyzed and compared, and the demands of the dynamic wake model for
online control are suggested.

2.1. Wake Effect and Wind Energy

As shown in Figure 2, the wind passes through two wind turbines, which are named T1
and T2. T1 extracts wind power, the wind speed behind the wind turbine decreases, and the
wind direction changes due to the viscous action between the airflow and blades [29,50–52];
this phenomenon is called the wake effect [53]. In the wake zone, because of the decrease in
wind speed and increase in turbulence intensity, the power of T2 decreases and the fatigue
damage increases [54]. The wake effect adds additional fatigue damage to downwind wind
turbines [55], which poses a serious threat to their power, reliability, and life [56,57].
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The data simulated by the Simulator for Wind Farm Applications (SOWFA) [51] shows
the evolution process of wake generation, revealing that the wake is related to spatial
displacement, which can be seen in Figure 2. From the visualization of wake generation by
the yaw turbine [58], the center of the wake deviates after the yaw turbine, which indicates
that the wake is related to the operation state of the upstream turbine. The wake generation
and evolution are complex [59], which depend on a variety of parameters [60]. An accurate
description of wake evolution is helpful for accurate control and power improvement. It is
necessary to study the wake model for accurate wake description.

2.2. Wake Model

A wake model is necessary for the wind farm controller, and the fidelity varies from
low to high depending on the accuracy of the wake models [61]. In order to reduce wake
interferences in the design and operation stages of OWFs, different wake models are listed
in this part. Some old wake models, including Jensen’s model [62] and Katic’s model [63],
are compared, showing the evolution of wake models.

The low-fidelity wake model is based on the integral relationship of hydrodynam-
ics, relying on the parametric assumptions of wake diffusivity [61]. Compared with the
high-fidelity wake model, the low-fidelity wake model does not take fluid details into
account [64]. Jensen’s model is a widely used simplified model for flat terrain, which can
effectively predict the distribution characteristics of the wake flow field and evaluate the
power generation of wind farms [63,65]. In order to improve the accuracy of the model
and obtain more features of the wake phenomenon, Jensen’s model has been continuously
modified and extended. Katic et al. [63] extended and modified Jensen’s model, proposing
a wake superposition model suitable for different incoming winds, which is used to predict
wind farm annual power generation. The Flow Redirection and Induction in Steady-state
(FLORIS) model [66] was released by the National Renewable Energy Laboratory (NREL)
and was used to model the impact of yaw on the wake evolution. The wind speed dis-
tribution in Jensen’s wake model is uniform; however, three wake regions in FLORIS are
divided according to the wake recovery characteristic, and high-fidelity simulations were
used to determine the model parameters of FLORIS, which can predict the wake wind
speed distribution more accurately. Gebraad et al. [67] tested the accuracy of FLORIS
at Horns Rev and Nysted, showing that the relative errors ranged from 0.1 to 5.3% in
different wind conditions. The dynamic wake model Flow Redirection and Induction Dy-
namics (FLORIDyn) [68] and the static wake model Floating Offshore Wind Farm Simulator
(FLOWFSim) [69] are extended on the basis of FLORIS model. In comparison with FLORIS,
FLORDyn considers the time delay caused by the changing state of the wake and makes an
effective judgment on the position and speed of the wake. The FLOWFSim is developed
for simulating the platform movement of offshore floating wind farms.

High-fidelity models capture relatively accurate details of velocity and pressure
gradients in the fluid domain through differential relationships of fluid dynamics [62].
SOWFA [70] adopts 3D large eddy simulation (LES) and uses the actuator linear potential
flow theory modeling, which can obtain additional flow phenomena compared with a
model such as SP-wind [71]. SP-wind is modeled by the actuator disk theory; SP-wind has
a lower computational cost than SOWFA, and the power prediction accuracy is slightly
lower than SOWFA. There are other wake models based on Computational Fluid Dynamics
(CFD) designs, such as star-CCM+ [72], developed by Siemens. The common feature of
high-fidelity wake models is a high calculation accuracy, but the calculation cost is very
high. Obviously, although the high-fidelity wake models can obtain the details of the wake
and the calculation accuracy is high, it is consequently hard for them to meet the work
requirements of computing time.

The medium-fidelity model is a simplified solution of the Turbulent Navel–Stokes
equation, and the computational complexity is lower than that of the high-fidelity model.
The WFSim (Wind Farm Simulator) model is used to study wake redirection control by
solving the two-dimensional unsteady turbulent Navel–Stokes equations [73], ignoring
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ground effects and the wake redirection. The dynamic wake model (DWM) [74] is based
on the boundary layer equation and vorticity formula, which can meet the needs of fast
calculation and relatively accurately calculate the advection and meandering of wind speed.
In spite of DMW ignoring the phenomenon of wake swirling and the effect of the ground
on the wake, this model has been used in some wind farm simulation models [75,76].

With the development of big data, machine learning algorithms based on data mining
are gradually applied to the study of wake models. A high-fidelity wake model is estab-
lished by the training of valid data and the data of wind turbine SCADA, and then the free
stream is used as the training input, and the entire flow field is used as the training output.
Well-established models can capture fluid dynamics [68]. The deep learning dynamic
wake model (DLDWM) was proposed by Zhang et al. [77]. Multiple sets of large eddy
simulations were performed to generate flow-field data for wind turbines operating under
various operating conditions. Appropriate orthogonal decomposition techniques were
then employed to reduce the flow-field dimensionality and a long short-term memory
network to predict the flow field at future time steps. However, from the simulation results,
the wake calculation method based on machine learning can support the needs of wind
farm control.

In addition, the inclusion of time-series prediction of the wake is of importance,
especially for the individual turbine feedforward control; wake time-series prediction
based on artificial intelligence (AI) has made some progress. Manohar et al. [78] proposed
to apply machine learning to a sensor-placement optimization method for achieving high-
precision signal reconstruction and called it sparse sensor placement optimization for
reconstruction (SSPOR). Ali et al. [79] proposed the use of bidirectional long short-term
memory (Bi-LSTM) for wake prediction, which can capture more wake features in the
far-wake region and achieve high prediction correlation compared with the actual, but
this method does not perform well in the near-wake region. Classification-based machine
learning (CBML) algorithms were used by Geibel and Bangga [80] for wake data reduction
and reconstruction; SSOPR [78] and Bi-LSTM [79] are also applied. The data for machine
learning training and testing came from high-fidelity simulations to ensure the accuracy of
the machine learning model. The test results showed that the method could predict the
wake cycle signal and obtain high-precision flow-field reconstruction of the near-wake of the
turbine by orthogonal decomposition, which can replace the traditional prediction method.

Considering the real-time fluctuation of power and fatigue damage, a dynamic wake
model with low computational cost and accurate capture of flow-field information is
required for online dynamic control. The dynamic wake models are summarized and
compared in Table 1. A fast and accurate dynamic wake model suitable for online control
can be selected from the above models. Based on the above analysis, FLORIDyn, DWM,
WFSim, and the machine learning method are useful for online dynamic wind farm wake
control, and the machine learning method shows great potential for the future.

Table 1. Dynamic wake model literature.

Model Time Computing Speed Fluid Details Fidelity

DWM 2007 medium yes medium
SOWFA 2012 slow yes high

FLORIDyn 2014 fast no low
SP-Wind 2015 slow yes high
WFSim 2016 medium yes medium

STAR-CCM+ 2018 slow yes high
DLDWM 2020 fast yes high
Bi-LSTM 2020 fast yes high

CBML 2022 fast yes high

2.3. Application of Wind Estimation in Wake Model

The wake model is an important basis for model-based control, and the accuracy of
wake model affects the wind farm control [81]. However, the wake characteristics are
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affected by many factors, including ambient wind direction, wind speed, atmospheric
turbulence, shear, and the spacing of nearby OWTs. Due to the complexity of the physical
process, the wake cannot be accurately predicted using a single numerical model, which
requires correction from field data.

Due to the aerodynamic coupling effect of airflow and blades, towers, nacelles, etc.,
wind-speed and wind-direction measurement at the nacelle are not accurate except for the
use of lidar wind measurement equipment [82]. Lidar wind measurement equipment is
expensive and greatly affected by weather, so it is still not widely used in wind farms at
present. It is important to obtain the corrected wind speed to predict the wind turbine
action [83]. Bottasso [84] calculated the wind estimation around the rotor by measuring the
blade bending moment. Using this method, both the effective wind speed on the rotor disk
and the local area could be obtained. However, no identification of the wind direction was
involved. Annoni et al. [83] proposed a wind direction estimation method by comparing
the wind direction of adjacent wind turbines. The estimated wind direction is used to
adjust the wake model parameters [84] or build a state estimator [85] for the correction of
the flow-field information in wind farm

Doekemeijer et al. [86] and Gebraad et al. [87] designed a Kalman filter to correct the
wake model parameters, making the control more accurate, realizing power optimization,
and reducing the large error of the wake model prediction data during initial operation.
The difference is that the correction of wake models are different, Doekemeijer et al. [86]
used Kalman filters to correct WFSim wake model, and Gebraad et al. [87] used Kalman
filters for the design of the parameters wake model FLORIDyn and the state estimation of
wake, but both of them have achieved better results.

Wind estimation plays a very important role in wake detection and wake center
determination. Although many of these methods have been verified in field measurement,
they have not been combined with wind farm control. It is believed that the use of wind
estimation methods can guide the wake control of wind farms in future research effectively.

3. Dynamic OWF Control

High-power generators are usually used in OWF [88]; the wake effect of high-power
generators is more obvious than that of low-power generators [62], and the attenuation
coefficient of the wake effect in OWF is smaller than that of onshore wind farm [89].
Therefore, the wake effect in OWF is more obvious, and the optimization of OWF is also
more urgent. At present, the dynamic OWF control focuses on yaw-based wake redirection,
axial induction factor control and wind turbine repositioning (wind turbine repositioning
is only applicable in floating wind farms). The corresponding control studies are listed in
Table 2.

3.1. Axial Induction-Based Control

Changing aerodynamic coupling could optimize wind-farm power generation through
load control, also known as axial induction-based control.

Axial induction factor (a) is the percentage reduction in wind speed between the free
stream and the turbine rotor. The blade pitch angle, generator torque, tip ratio, and thrust
coefficient affect the axial induction coefficient. As shown in Figure 3, when the upstream
wind turbine T1 deviates from its optimal operating point, its power decreases, but the
wind speed in the wake region of T1 increases significantly, resulting in an increase in the
power of T2. Annoni [52] also found that the power of T1 decreased slightly, its power
value did not drop too much, while the power increase in T2 was very significant. Many
studies have shown that controlling upstream wind turbines can increase the wind speed
in the wake region, thereby increasing downstream wind turbines’ power [52,90,91].
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Figure 3. Control diagram of axial induction-based control.

Goit and Meyers [92] proposed an optimal control method for boosting power, taking
the turbine thrust coefficient as the control input and adopting the backward horizontal
control method. The control problem in their research was decomposed into several optimal
control sub-problems. The applied wake model was an LES-based high-fidelity dynamic
model, and the actuator disk model (ADM) was applied as the wind turbine model. They
simulated in a 10 × 5 aligned wind farm with a spacing of seven rotor diameters (D) to
demonstrate the feasibility of axial induction factor control. High-fidelity simulations
showed a 25% increase in power compared to dynamic control using a low-fidelity wake
model. Although this method makes the wind-farm power increase in simulation, the
expensive computational cost of dynamic LES-based is not feasible for online dynamic
optimization.

Vali et al. [93,94] used the WFsim wake model [73] to improve the computational cost
and proposed an adjoint-based model predictive control method (AMPC). The method
was verified by simulation of a 2 × 3 wind farm. The result showed that a 4% power
growth was achieved in time-varying turbulent wind conditions with full wake coverage.
AMPC was properly parameterized to achieve an efficient execution time of 7 s, but this
may affect control performance, and the method has not been tested in wind field. In the
experiment of Van et al. [95], pitch angle was controlled, and the optimal pitch angle for
each wind direction was calculated to maximize wind farm power. It was tested at the
Goole fields wind farm, which consists of three rows of sixteen wind turbines of 2050 kW.
After a year of measurement, it was found that the single-row wind turbines achieved a
power growth of 3.3% under a specific wind direction and wind speed. The improved
power of simulation analysis was higher than the measured power in field, which may be
caused by the following: firstly, the distance between the turbines is short in the tested
wind farm (the distance of the tested wind farm between the wind turbines is 2.3–3.1D,
while the distance between the wind turbines of the general wind farm is 6D); secondly,
yaw misalignment of the wind turbine leads to low power despite the wind direction filter;
finally, the induction control is not timely, for example, due to the control delay in actual
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operation, the time in the wake region is greater than the time of the axial induction control
of wind turbines.

The accuracy of the wake model may reduce the real-time performance and accuracy
of model-based control, so it is very important to choose a suitable wake model. However,
model-free control strategies are based on data-driven rather than complex interaction
between wake aerodynamics and turbines, which reduces a lot of work for wind farm power
optimization. Marden et al. [96] realized model-free real-time dynamic optimization to
obtain the optimal power operation point of wind farm and proposed a control optimization
method based on distributed game theory. The method achieved the maximum power
by pursuing the satisfaction of each turbine. The distributed controller needs to iterate
105 times to complete a control calculation. Obviously, the expensive computational cost of
farm control algorithm for time-varying wind conditions and dynamic wake is not enough.

In order to improve the control efficiency, Gebraad et al. [97] carried out the following
research: a maximum-power point-tracking (MPPT) control scheme was proposed, and
gradient optimization was carried out to achieve efficient distributed control according
to the power response and adjacent wind turbine power. In contrast to the distributed
game theory simulation of Marden et al. [96], this method only considers adjacent wind
turbines, not the entire wind farm. The power increase in the MPPT control is 4%, which is
lower than that of the game theory control method, but the MPPT control can converge
in 1 h, while the game theory requires 80 h. Obviously, MPPT control is more suitable for
online control.

Yang et al. [98] proposed a nested loop extremum search control method. The control
input was the generator torque. The array of three turbines was simulated under different
conditions of (a) 8 m/s mean wind speed, 5% turbulence intensity; and (b) 6 m/s steady-
state wind and (c) 10 m/s steady-state wind. The results showed that the power increased
by 1.3%, 9.09%, 0.55% in wind conditions of a, b, c, respectively. Because the power
reference at low wind speed was much lower than that of high wind speed, the magnitude
of the power increase was more at low wind speed. Compared with wind conditions of
b, the power boost under wind conditions of a was much smaller. Optimizing the power
efficiency greatly under turbulent wind remains a difficult problem.

Wu et al. [99] improved the nested loop extremum search control method. Delay
compensation was used to enhance the nonlinear disturbance control of the nested loop
extremum search control method and improve the convergence speed. Three turbine arrays
were simulated and compared with a nested loop extremum search control method. The
results showed that the total average power of the wind turbine was good under a wind
speed of 8 m/s and turbulence intensity of 10%. The wind turbine power of the nested
loop extremum search control method was increased by 0.34%, while the total power of the
delay compensated nested loop extremum search control method was increased by 0.61%.

Similar to the distributed game theory algorithm proposed by Marden et al. [96],
Zhong et al. [100] proposed a distributed discrete adaptive filtering algorithm. In their
algorithm, the axial induction factor of each control unit was perturbed by the probability
distribution function. Additionally, the reference axial induction factor and power were
updated when the power of the wind farm increased. The difference is that the interference
is suppressed by the adaptive filtering method, so they can converge faster. The method
was tested with a dynamic park model, and the results showed that the power efficiency
was improved by 3.87% after 200 iterations. The method of Zhong et al. [100] is more
suitable for time-varying wind conditions and dynamic wake wind farms.

3.2. Yaw-Based Wake Redirection

Yaw-based wake redirection means that upstream wind turbine T1 changes the wake
direction in the downwind direction by yaw misalignment [101]. Wind turbine T2, orig-
inally located in the wake area, is no longer covered, as shown in Figure 4. Due to the
misalignment between the rotor and the incoming wind, the deflection of the wake makes
the force on both sides of the rotor unbalanced, which leads to a gain in momentum in
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the crosswind direction. In this way, downstream wind turbines arranged downwind can
reduce the interference of the upstream wake. Various control methods of yaw-based wake
redirection are developed based on the above principle.
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Fleming et al. [102] investigated the feasibility of increasing power through yaw-based
control, in which the wake centerline is redirected by rotor tilt. It was found that the fatigue
damage of yaw bearing increased. Churchfield et al. [103] found that wind farm power
could be improved of 10% by turbine yaw control in a specific wind direction, but with a
lower power increase in other directions, even for negative power gains. The scholars also
tested their method in the Fishermen Atlantic City wind farm, finding that the efficiency of
the wind farm was improved by 1% with the effective yaw misalignment.

Archer et al. [104] studied a wind farm with 28 wind turbines by LES and came to
the same conclusion: the net power increases with a positive yaw error angle due to the
Coriolis effect, while the net power decreases with a negative yaw error angle decrease.
The wake generated by yaw misalignment was narrower than that generated by non-yaw.
Furthermore, for a wind farm with eight rows of wind turbines, a higher power increase
was generated when the first row and sixth row of the wind farm yaw effectively. The
above studies showed that yaw control was useful for power boosting.

Gebraad et al. [67] used the game theory optimization method to optimize the wind
farm power, and SOWFA was adopted to correct the wake model parameter of FLORIS
for the optimal yaw misalignment angle. In addition, SOWFA was used to simulate a
3 × 2 scale wind farm, while the turbulence density of simulation inflow wind was 6%
and the average wind speed was 8 m/s. The simulation result showed that the power
increased by 13%. Fleming et al. [105] modeled the Princess Amalia wind farm by FLORIS
and adopted yaw control optimization to increase the power generation per square meter
by 7.7%.
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Different from the FLORIS wake model, flow delays the wake effect and can describe
the linear state space of wake propagation, and the nonlinear feedback term of wake
characteristics was considered in the FLORIDyn wake model [68]. Gebraad et al. [87]
proposed a wide range of grid search methods, of which the control parameters were
evaluated by wake dynamic FLORIDyn. In the simulation experiment of three wind
turbines with streamwise spacing of 5D, the adaptive control could increase the power
generation by 0.19%, and the calculation time was short, which is suitable for online control.

Because the control is greatly affected by the simulation environment or the actual
wind field environment, the simulation results vary greatly in different simulations or
experiments. For example, Munters et al. [35] developed a yaw-based and axial induction
factor control method that combined backward horizontal and continuous adjoint gradient
evaluations. By simulating a 4 × 4 aligned wind farm, there were power gains of over
92% in steady-state wind conditions and over 21% in turbulence conditions (turbulence
intensity of 8%) by yaw control. In Munters’ study [106], the effect of wind turbine spacing
and layout on this control method was investigated. Yaw-based control was considered to
be effective for aligned wind farms and closely spaced wind farms.

In addition, Ciri et al. [107] developed a model-free nested extreme value optimization
algorithm, which implemented the real-time gradient algorithm. The yaw error angle
was updated with the estimated gradient in each loop until the power iteratively con-
verged to the optimum. The power increase was up to 7% in turbulence wind with an 8%
turbulence intensity.

Table 2. Summary of reference wind farm dynamic control algorithms.

Reference Method Input Streamwise Spacing Wake Model Power Gain

Goit and Meyers [92] Centralized receding
horizon optimal control CT 7D Dynamic LES 15.8%

Munters and Meyers [35] Centralized receding
horizon optimal control CT 6D Dynamic LES 15%

Vali et al. [93,94] Centralized adjoint-based
model predictive control a 5D Dynamic WFSim 23.59%

Van et al. [95] Lookup table for optimal
blade pitch angle settings β 2.3~3.1D FarmFlow 3.3%

Marden et al. [96] game-theoretic control a 5D Model-free 34.05%
Gebraad et al. [97] Maximum tracking control a 5D Model-free 4%

Yang et al. [98] Nested ring extremum
search control Torque gain 5D Model-free 1.3%; 9.09%;

0.55%

Wu et al. [99]
Delay compensation nested

loop extremum
search control

Torque gain 5D Model-free 0.72%; 0.34%.

Gebraad et al. [66] Optimization of
game theory γ 5D FLORIS 13%

Fleming et al. [96] Lookup table for optimal
yaw settings γ 7D FLORIS 7.7%

Gebraad et al. [67]
Nonlinear model predictive

control using extensive
grid search

γ 5D FLORIDyn 0.19%

Munters and Meyers [35]
Combination of backward

level and continuous
adjoint gradient evaluation

γ 6D Dynamic LES 21%

Ciri et al. [107] Nested extremum
optimization algorithm γ 5D Dynamic LES

7% (rotor diameter of
126 m); 3% (rotor
diameter of 27 m)

According to the current literature [52,103], although yaw misalignment control is
better than the axial induction factor control for optimizing the wind farm power, when the
yaw error is too large, it will cause an increase in the wind turbine load. Therefore, there
are more and more methods of combining yaw control and axial induction factor [106,108],
which can consider wind turbine fatigue damage and power comprehensively. The method
of combining yaw and axial induction factors is one of the most effective methods for wake
control in wind farms with fixed wind turbines.
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3.3. Repositioning

Boersma et al. [61] optimized the layout of the floating offshore turbine in OWF
according to the wind direction in real time for reducing the wake overlapping. As shown
in Figure 5, when T2 is in the wake interference area of T1, the wake overlapping at wind
turbine T2 is reduced by increasing the spacing between the two wind turbines in the
vertical wind direction.
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The development of repositioning is still in its infancy [109]; it is suitable for offshore
floating wind turbines with mooring lines, two types of floating wind turbines shown in
Figure 6 [110]. Repositioning simulation research was proved to be of great potential for
power increase. Fleming et al. [111] studied the relocation open-loop control of two wind
turbines by moving 1 diameter in the wind vertical direction, during which the power of
the wind farm was improved by 41%.
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Rodrigues et al. [112] proposed a real-time reposition control strategy for a floating
wind turbine, using the evolutionary strategy of covariance matrix adaptations. The
strategy was used to verify a wind farm with 36 wind turbines, and the distance between
the turbines was 1 km. This strategy was used to reposition the wind turbines, resulting in
a maximum efficiency improvement of 18.11%.

Han et al. [113] used a greedy control algorithm to reposition offshore floating wind
turbines to maximize power. The basic principle was to change the thrust acting on the
rotor by changing the axial induction factor and yaw misalignment. In order to balance the
thrust and restoring force generated by the mooring line, the position of the wind turbine
was moved and repositioned by the force.

Kheirabadi et al. [69] developed FOWFSIM to study the repositioning of floating
wind turbines. By optimizing the design parameters and configuration of floating wind
farms, they determined the best operating parameters of wind turbines and realized the
relocation [40]. This model was then used to evaluate the potential of the method proposed
by Han et al. [113]. The simulation results showed that the power of a 7 × 7 wind farm
increased by 42.7% under the condition that the specific mooring system direction and
anchor point position was sufficient for mooring lines.

Although studies have shown that wind turbine repositioning plays a huge role
in reducing wake interferences [69,109], there are still few studies in the literature on
wind turbine repositioning, and this control method is still in its infancy. In practical
applications, the length of the mooring line, the material properties, the fixed structure, and
the installation and control of the winches also need to be considered [112]. Because the
floating wind turbine is subject to wind thrust and wave motion, which causes the wind
turbine itself to vibrate, there are still many factors that need to be considered in the study
of repositioning.

3.4. Remaining Issues

(1) The wind estimation algorithm of the corrected wake model cannot be calculated
online, and the calculation of the wake model cannot be combined with the actual wind
farm control.

(2) Operation data is obtained from the SCADA data feedback, which is not enough to
support the control requirements of wind turbines operation, such as no blade cracking
signal, icing status signal, etc.

(3) Although there are many studies on power enhancement, few studies focus on
both power and fatigue damage. Many wind turbines are not installed with some moment
sensors that directly sense the wind, such as blade root moment sensors and yaw moment
sensors, which are required for wind farm load control, so it is difficult to comprehensively
control wind farm power and fatigue damage at the same time.

(4) Machine learning, artificial intelligence (AI), and multi-criteria decision making
(MCDM) can discover more information from data, so the technologies have developed
very rapidly and been applied to the wind power industry gradually, such as the application
of machine learning algorithms and AI in wind farm fault diagnosis/wind farm control,
and MCDM research on micro-siting of wind farms. If it can be applied to the control of
dynamic wakes in wind farms, it may make great progress in fatigue damage and power
control of wind farms [114–116].

To cope with the above challenges, this paper proposes the combination of the currently
popular digital twin (DT) technology with wind farm wake models to guide OWF wake
control. The academic perspective on applying DT to OWF control will be explained in the
following sections.

4. Suggestion of Digital Twins on OWTs
4.1. Introduction of Digital Twins

The concept of DT was first proposed by Grieves [117] and subsequently received
more attention. A common definition of DT is the replication of complex physical processes
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from a physical model to a virtual model, enabling the virtual model to react to the physical
model, which is used to simulate one or more physical systems in real time to reflect the
real physical phenomena [118].

DT technology is used for food [119], healthcare [120], engineering technology and
manufacturing [121], industrial internet of things [122], smart agriculture [123], construc-
tion [124], etc. It is also used for equipment monitoring, operation, and maintenance.
For example, NASA used DT technology in spacecraft monitoring to make remote status
detection and action decisions easier [119]. It brings convenience for early warning of wind
farm failure status and decision-making of operation and maintenance and is very useful
for reducing downtime and increasing annual power generation [125]. The equipment
state can be predicted and the operation of equipment can be improved [126]. In recent
years, DT techniques have been gradually combined with big data and machine learning
algorithms [127]. In order to better fit the physical model, the temporal evolution of DT
model parameters can be predicted by using machine learning algorithms [128], AI and
MCDM [114–116].

4.2. Recommendations for DT Application to OWF Dynamic Wake Management

The wake effect produced by one wind turbine can be described and predicted by
wake models. However, the dynamic wake of wind farms is complex, and the parameters
of the wake model are difficult to determine accurately. Especially in the initial stage of
wake influence, the wake is unpredictable, and there are wake superpositions and deep
array effects in the wake evolution process. In addition, the fatigue damage of the wind
turbine without blade root, yaw, and tower base moment sensors cannot be measured.
Therefore, the control process is not easy to determine; it is more difficult to considering
both power and fatigue damage. DT technology has great application potential in the study
of dynamic wake. DT technology can copy the physical model into a virtual model, and
the virtual model can be used for all moment calculation of wind turbines. This section
gives specific suggestions.

The DT frame for OWF wake control is shown in Figure 7, which consists of physical
models, virtual models, twin databases and service systems. The data obtained from the
physical model (including OWT aerodynamic load, OWF turbulence calculation, SCADA
data, OWTs and OWF control data) is stored in the twin database and mapped to the virtual
model. The turbulence prediction model and high-fidelity simulation model of dynamic
wake analysis are established for the virtual model. Combined with wind estimation, the
wake model is constantly corrected by aerodynamic load and noise. The optimal control is
implemented by the flow field details, which is from the constantly updated wake model
by adding control disturbance and enabling what-if analysis risk assessments. At the same
time, the optimal control decision is transmitted to the physical model, and the virtual
model and service system are modified according to the real-time operational data of the
physical model, so as to increase the power and the fatigue damage of wind turbines.

The physical model is composed of OWTs, OWF operation and control data, anemome-
ter tower used to measure turbulence wind, wake interferences detection and state detec-
tion of wind farm. The OWF anemometer tower detects inflow wind speed and direction.
Sensors installed on each OWTs monitor the operation status of the OWTs, of particular
importance to which the load sensors that detect the aerodynamic load and noise. The real-
time operation data of OWF and OWTs is stored in the twin database, which provides more
physical information and parameters updating for the virtual model and service system.
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The virtual model is a mapping of the physical model, which is realized by several
sub-models: wind farm model, mesoscale Weather Research and Prediction Model (WRF),
wind farm wake aerodynamic prediction [78–80] and virtual blade coupling model [129].
FAST. Farm software of NREL company is used to build wind farm model. It is a mid-
fidelity wind farm simulation tool capable of satisfying dynamic wake field analysis and
accuracy [130,131]. A mesoscale weather research and forecast model considering wind
farm conditions is established to obtain downscaled wind speed and direction data. Taking
numerical weather data as the initial condition and power prediction data as the boundary
condition, the high-fidelity aerodynamic simulation and virtual blade coupling model of
the wake of the wind farm are established and the wind field simulation parameter is
calculated. Aerodynamic load is used to check whether OWTs are affected by wake and to
estimate wind conditions, so the fatigue damage is obtained. The virtual model is updated
in real time according to the data generated by the physical model, which is taken as the
input of the virtual model.
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The service system consists of the input part, disturbance part, and decision. When
there is wake interference in a wind farm, the flow field details provided by the wake
model are used for wake control of OWF. The control effect is evaluated according to the
results of simulated power and fatigue damage. Hypothetical outcomes are predicted by
perturbation of real-time data, which is convenient for the optimal control of the imaginary
situation. Finally, the optimal decision is made and transmitted to the physical model.

DT data are derived from SCADA data, control data, and wind data in the physical
model. The virtual model and service system were driven by DT data, while DT data are
continuously updated according to the control data in the virtual model, physical system,
and service system.

5. Conclusions and Recommended Future Research Directions

Wind power is a clean, safe, and cheap power source. The installed capacity of wind
power is increasing rapidly under the international situation that many countries around
the world make commitments to net-zero carbon neutrality. Marine wind energy resources
are abundant, so OWP has a broader space for development. Compared with onshore wind
power, one of the shortcomings of OWP is that it is affected by the wake severely. OWTs
under the wake interference not only reduce the power but also increase the fatigue damage.

This paper reviews the main features of wake models and control methods in the
existing literature, puts forward the requirements of dynamic wake management, and
solves the gap in the research of dynamic wake control. Considering both power and
fatigue damage is proposed for the first time, and a DT framework of dynamic OWF wake
management is proposed in this paper. This new DT framework is expected to address
dynamic wake detection, dynamic wake optimization control, risk prediction, and control
decisions to increase the wind farm power and reduce the fatigue loads.

The following suggestions may be helpful to people for the future of wind farm
dynamic wake management:

(1) Correction of dynamic wake model: Accurate wake information is of great importance
for wind farm wake control, especially the wake center position and wind direction.
The dynamic wake model can be corrected by using wind estimation, and there are
already many effective wind-estimation methods. However, studies combining wind
estimation and wind farm control remain the focus of future research.

(2) Repositioning of floating wind farms: In the control of floating wind farms, repo-
sitioning of wind turbines has great potential to alleviate wake interference, but it
poses great challenges to the stability of the floating wind turbine and the reliability
of winches and mooring lines. In addition, there is little research in this area. This
may be one of the key considerations for floating wind farm repositioning control in
the future.

(3) Consideration of time-varying wind direction: Although many wind farm control
methods have achieved good results, they are obtained without considering time-
varying wind direction. The effect will be greatly reduced when considering the
simulation or measurement of time-varying wind direction. Therefore, the way to
deal with this challenge needs to be considered in future wind farm control.

(4) Application of machine learning, AI and MCDM in wind farm dynamic wake control:
In the future, machine learning, AI and MDCM will have great potential in the
application of wind farms, but their applicability in actual dynamic wake management
needs more research.

(5) DT technology application: Although there have been studies on the application of DT
technology in the operation and maintenance and fault diagnosis of wind farms [132],
there may be a high requirement for the calculation speed of DT virtual model aimed
at real-time dynamic control of wind farms.
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