Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis
3.2. Network Characteristics
3.2.1. International Cooperation Networks
3.2.2. Author Cooperation Networks
3.2.3. Keyword Co-occurrence Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rank | Journal | Number of Related Articles | Impact Factor |
---|---|---|---|
1 | Energies | 93 | 3.252 |
2 | Renewable Energy | 62 | 8.634 |
3 | Wind Energy | 44 | 3.710 |
4 | Renewable and Sustainable Energy Reviews | 35 | 16.799 |
5 | IET Renewable Power Generation | 32 | 3.034 |
6 | IEEE Transactions On Power Systems | 30 | 7.362 |
Ocean Engineering | 30 | 4.372 | |
8 | IEEE Transactions On Power Delivery | 25 | 4.825 |
9 | Energy | 22 | 8.857 |
IEEE Transactions On Energy Conversion | 22 | 4.877 | |
IEEE Transactions On Sustainable Energy | 22 | 8.310 |
Rank | Title | Authors | Total Citation | Publication Year |
---|---|---|---|---|
1 | Disruption to place attachment and the protection of restorative environments: A wind energy case study | Devine-Wright and Howes [58] | 490 | 2010 |
2 | High-power wind energy conversion systems: State-of-the-art and emerging technologies | Yaramasu et al. [59] | 430 | 2015 |
3 | Impacts of wind power on thermal generation unit commitment and dispatch | Ummels et al. [60] | 416 | 2007 |
4 | Assessing the impacts of wind farms on birds | Drewitt and Langston [61] | 394 | 2006 |
5 | The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm | Hansen et al. [62] | 274 | 2012 |
6 | Many ways to say ‘no’, different ways to say ‘yes’: Applying Q-methodology to understand public acceptance of wind farm proposals | Ellis et al. [63] | 260 | 2007 |
7 | Maintenance management of wind power systems using condition monitoring systems-Life cycle cost analysis for two case studies | Nilsson and Bertling [64] | 218 | 2007 |
8 | Ecological and economic cost-benefit analysis of offshore wind energy | Snyder and Kaiser [65] | 214 | 2009 |
9 | Evaluating techniques for redirecting turbine wakes using SOWFA | Fleming et al. [66] | 192 | 2014 |
10 | Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar | Barthelmie et al. [67] | 191 | 2006 |
References
- Steins, N.A.; Veraart, J.A.; Klostermann, J.E.M.; Poelman, M. Combining offshore wind farms, nature conservation and seafood: Lessons from a Dutch community of practice. Mar. Policy 2021, 126, 104371. [Google Scholar] [CrossRef]
- Glasson, J.; Durning, B.; Welch, K.; Olorundami, T. The local socio-economic impacts of offshore wind farms. Environ. Impact Assess. Rev. 2022, 95, 106783. [Google Scholar] [CrossRef]
- Yang, H.; Lin, C.Y. Promising strategies for the reduction of pollutant emissions from working vessels in offshore wind farms: The example of Taiwan. J. Mar. Sci. Eng. 2022, 10, 621. [Google Scholar] [CrossRef]
- Perveen, R.; Kishor, N.; Mohanty, S.R. Off-shore wind farm development: Present status and challenges. Renew. Sustain. Energy Rev. 2014, 29, 780–792. [Google Scholar] [CrossRef]
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef]
- Bailey, H.; Brookes, K.L.; Thompson, P.M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 2014, 10, 8. [Google Scholar] [CrossRef]
- Amaro, N.; Egorov, A.; Glória, G. Fostering offshore wind integration in Europe through grid connection impact assessment. J. Mar. Sci. Eng. 2022, 10, 463. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Review of the current status, technology, and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Wilhelmsson, D.; Malm, T. Fouling assemblages on offshore wind power plants and adjacent substrata. Estuar. Coast. Shelf Sci. 2008, 79, 459–466. [Google Scholar] [CrossRef]
- Lindeboom, H.J.; Kouwenhoven, H.J.; Bergman, M.J.N.; Bouma, S.; Brasseur, S.; Daan, R.; Fijn, R.C.; de Haan, D.; Dirksen, S.; van Hal, R.; et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environ. Res. Lett. 2011, 6, 035101. [Google Scholar] [CrossRef] [Green Version]
- Langhamer, O. Artificial reef effect in relation to offshore renewable energy conversion: State of the art. Sci. World J. 2012, 2012, 386713. [Google Scholar] [CrossRef] [PubMed]
- Bergström, L.; Kautsky, L.; Malm, T.; Rosenberg, R.; Wahlberg, M.; Åstrand Capetillo, N.; Wilhelmsson, D. Effects of offshore wind farms on marine wildlife–A generalized impact assessment. Environ. Res. Lett. 2014, 9, 034012. [Google Scholar] [CrossRef]
- Wilhelmsson, D.; Malm, T.; Öhman, M.C. The influence of offshore wind power on demersal fish. ICES J. Mar. Sci. 2006, 63, 775–784. [Google Scholar] [CrossRef]
- Hemery, L.G.; Mackereth, K.F.; Tugade, L.G. What’s in my toolkit? A review of technologies for assessing changes in habitats caused by marine energy development. J. Mar. Sci. Eng. 2022, 10, 92. [Google Scholar] [CrossRef]
- Charles, J.; Kumar, R.; Kumar, D.V.; Baskar, D.; Arunsy, B.M.; Jenova, R.; Majid, M.A. Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India. Energy Environ. 2021, 32, 565–603. [Google Scholar] [CrossRef]
- Tsai, Y.M.; Lin, C.Y. Investigation on improving strategies for navigation safety in the offshore wind farm in Taiwan Strait. J. Mar. Sci. Eng. 2021, 9, 1448. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Tabassum-Abbasi, A.T.; Abbasi, T. Impact of wind-energy generation on climate: A rising specter. Renew. Sustain. Energy Rev. 2016, 59, 1591–1598. [Google Scholar] [CrossRef]
- Poulsen, T.; Lema, R. Is the supply chain ready for the green transformation? The case of offshore wind logistics. Renew. Sustain. Energy Rev. 2017, 73, 758–771. [Google Scholar] [CrossRef]
- Maslov, N.; Claramunt, C.; Wang, T.; Tang, T. Evaluating the visual impact of an offshore wind farm. Energy Procedia 2017, 105, 3095–3100. [Google Scholar] [CrossRef]
- Bouman, E.A.; Øberg, M.M.; Hertwich, E.G. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES). Energy 2016, 95, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Bush, D.; Hoagland, P. Public opinion and the environmental, economic and aesthetic impacts of offshore wind. Ocean Coast. Manag. 2016, 120, 70–79. [Google Scholar] [CrossRef]
- Kausche, M.; Adam, F.; Dahlhaus, F.; Großmann, J. Floating offshore wind–economic and ecological challenges of a TLP solution. Renew. Energy 2018, 126, 270–280. [Google Scholar] [CrossRef]
- Ryan, K.; Danylchuk, A.; Jordaan, A. Consideration of scales in offshore wind environmental impact assessments. Environ. Impact Assess. Rev. 2019, 75, 59–66. [Google Scholar] [CrossRef]
- Albrechtsen, E. Occupational safety management in the offshore wind industry–status and challenges. Energy Procedia 2012, 24, 313–321. [Google Scholar] [CrossRef]
- Sobiech, C.; Droste, R.; Hahn, A.; Korte, H. Model-based development of health, safety, and environment plans and risk assessment for offshore operations. IFAC Proc. Vol. 2012, 45, 49–54. [Google Scholar] [CrossRef]
- Seyr, H.; Muskulus, M. Safety indicators for the marine operations in the installation and operating phase of an offshore wind farm. Energy Procedia 2016, 94, 72–81. [Google Scholar] [CrossRef]
- Preisser, A.M.; McDonough, R.V.; Harth, V. The physical performance of workers on offshore wind energy platforms: Is pre-employment fitness testing necessary and fair? Int. Arch. Occup. Environ. Health 2018, 92, 513–522. [Google Scholar] [CrossRef]
- Claudy, M.C.; Michelsen, C.; O’Driscoll, A.O. The diffusion of microgeneration technologies–Assessing the influence of perceived product characteristics on home owners’ willingness to pay. Energy Policy 2011, 39, 1459–1469. [Google Scholar] [CrossRef]
- Caporale, D.; De Lucia, C. Social acceptance of on-shore wind energy in Apulia region (southern Italy). Renew. Sustain. Energy Rev. 2015, 52, 1378–1390. [Google Scholar] [CrossRef]
- Müller, S.; Backhaus, N.; Buchecker, M. Mapping meaningful places: A tool for participatory siting of wind turbines in Switzerland? Energy Res. Soc. Sci. 2020, 69, 101573. [Google Scholar] [CrossRef]
- Kimmell, K.; Stolfi Stalenhoef, D. The cape wind offshore wind energy project: A case study of the difficult transition to renewable energy. Gold. Gate Univ. Environ. Law J. 2011, 5, 197. [Google Scholar]
- ten Brink, T.S.; Dalton, T. Perceptions of commercial and recreational fishers on the potential ecological impacts of the Block Island Wind Farm (US). Front. Mar. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, L.; Wei, L. Environmental impact and control measures of new wind power projects. Procedia Environ. Sci. 2011, 10, 2788–2791. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Wagner, C.S.; Brahmakulam, I.; Jackson, B.; Wagner, C.; Wong, A.; Yoda, T. Science and Technology Collaboration: Building Capacity in Developing Countries? Contract No.: MR-1357.0-WB; RAND Science and Technology: Santa Monica, CA, USA, 2001. [Google Scholar]
- Chinchilla-Rodríguez, Z.; Miao, L.; Murray, D.; Robinson-García, N.; Costas, R.; Sugimoto, C.R. A global comparison of scientific mobility and collaboration according to national scientific capacities. Front. Res. Metr. Anal. 2018, 3, 17. [Google Scholar] [CrossRef]
- Dao, C.D.; Kazemtabrizi, B.; Crabtree, C.J. Offshore wind turbine reliability and operational simulation under uncertainties. Wind Energy 2020, 23, 1919–1938. [Google Scholar] [CrossRef]
- Wu, Y.K.; Wu, W.C.; Zeng, J.J. Key issues on the design of an offshore wind farm layout and its equivalent model. Appl. Sci. 2019, 9, 1911. [Google Scholar] [CrossRef]
- Chen, J.; Kim, M.H. Review of recent offshore wind turbine research and optimization methodologies in their design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Cockerill, T.; Kühn, M.; van Bussel, G.; Bierbooms, W.; Harrison, R. Combined technical and economic evaluation of the northern European offshore wind resource. J. Wind Eng. Ind. Aerodyn. 2001, 89, 689–711. [Google Scholar] [CrossRef]
- Carstensen, J.; Henriksen, O.D.; Teilmann, J. Impacts of offshore wind farm construction on harbour porpoises: Acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar. Ecol. Progr Ser. 2006, 321, 295–308. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 2008, 1134, 233–266. [Google Scholar] [CrossRef]
- Fox, A.D.; Desholm, M.; Kahlert, J.; Christensen, T.K.; Petersen, I.B.K. Information needs to support environmental impact assessments of the effects of European marine offshore wind farms on birds. IBIS 2006, 148, 129–144. [Google Scholar] [CrossRef]
- Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 2009, 90, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Dähne, M.; Gilles, A.; Lucke, K.; Peschko, V.; Adler, S.; Krügel, K.; Sundermeyer, J.; Siebert, U. Effects of pile-driving on harbor porpoises (Phocoena phocoena) at the first offshore wind farm in Germany. Environ. Res. Lett. 2013, 8, 025002. [Google Scholar] [CrossRef]
- Reichert, K.; Gusky, M.; Gutow, L. Vervollständigung der Zeitreihen Während der Betriebsphase und Ermittlung von Veränderungen des Benthos Durch Ausweitung des Anlagenbezogenen Effektmonitorings; Zwischenbericht 2011 zur Ökologische Begleitforschung am Offshore-Testfeldvorhaben “Alpha Ventus”; Electronic Publication Information Center, Alfred Wegener Institute for Polar and Marine Research, Helmholtz Association: Berlin, Germany, 2012; pp. 1–11. [Google Scholar]
- Atalah, J.; Fitch, J.; Coughlan, J.; Chopelet, J.; Coscia, I.; Farrell, E. Diversity of demersal and megafaunal assemblages inhabiting sandbanks of the Irish Sea. Mar.Biodivers. 2013, 43, 121–132. [Google Scholar] [CrossRef]
- Stenberg, C.; Støttrup, J.; Deurs, M.V.; Berg, C.W.; Dinesen, G.E.; Mosegaard, H.; Grome, T.; Leonhard, S.B. Long-term effects of an offshore wind farm in the North Sea on fish communities. Mar. Ecol. Prog. Ser. 2015, 528, 257–265. [Google Scholar] [CrossRef]
- Pezy, J.P.; Raoux, A.; Dauvin, J.C. The environmental impact from an offshore wind farm: Challenge and evaluation methodology based on an ecosystem approach. Ecol. Indic. 2020, 114, 106302. [Google Scholar] [CrossRef]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 2021, 10, 8169–8193. [Google Scholar] [CrossRef]
- Psuty, I.; Zaucha, J.; Mytlewski, A.; Marta, S.; Lena, S. The use of the contribution margin on the valorisation of polish fisheries for maritime spatial planning. Ocean Coast. Manag. 2021, 211, 105751. [Google Scholar]
- Smythe, T.; Bidwell, D.; Moore, A.; Smith, H.; McCann, J. Beyond the beach: Tradeoffs in tourism and recreation at the first offshore wind farm in the United States. Energy Res. Soc. Sci. 2020, 70, 101726. [Google Scholar] [CrossRef]
- Leung, D.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.N.; Huang, Z. Environmental issues associated with wind energy–A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Willsteed, E.; Gill, A.B.; Birchenough, S.; Jude, S. Assessing the cumulative environmental effects of marine renewable energy developments: Establishing common ground. Sci. Total Environ. 2016, 577, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Vanclay, F.; Hanna, P. Conceptualizing Company Response to Community Protest: Principles to Achieve a Social License to Operate. Land 2019, 8, 101. [Google Scholar] [CrossRef]
- Alem, M.; Herberz, T.; Karanayil, V.S.; Fardin, A.A.H. A Qualitative meta-analysis of the socioeconomic impacts of offshore wind farms. Sustinere: J. Environ. Sustain. 2020, 4, 155–171. [Google Scholar] [CrossRef]
- Devine-Wright, P.; Howes, Y. Disruption to place attachment and the protection of restorative environments: A wind energy case study. J. Environ. Psychol. 2010, 30, 271–280. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE 2015, 103, 740–788. [Google Scholar] [CrossRef]
- Ummels, B.C.; Gibescu, M.; Pelgrum, E.; Kling, W.L.; Brand, A.J. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 2007, 22, 44–51. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H. Assessing the impacts of wind farms on birds. IBIS 2006, 148, 29–42. [Google Scholar] [CrossRef]
- Hansen, K.S.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15, 183–196. [Google Scholar] [CrossRef]
- Ellis, G.; Barry, J.; Robinson, C. Many ways to say ‘no’, different ways to say ‘yes’: Applying Q-Methodology to understand public acceptance of wind farm proposals. J. Environ. Plan. Manag. 2007, 50, 517–551. [Google Scholar] [CrossRef]
- Nilsson, J.; Bertling, L. Maintenance management of wind power systems using condition monitoring systems–Life cycle cost analysis for two case studies. IEEE Trans. Energy Convers. 2007, 22, 223–229. [Google Scholar] [CrossRef]
- Snyder, B.; Kaiser, M.J. Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 2009, 34, 1567–1578. [Google Scholar] [CrossRef]
- Fleming, P.A.; Gebraad, P.M.O.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield, M.; Michalakes, J.; Spalart, P.; Moriarty, P. Evaluating techniques for redirecting turbine wakes using SOWFA. Renew. Energy 2014, 70, 211–218. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Larsen, G.C.; Frandsen, S.T.; Folkerts, L.; Rados, K.; Pryor, S.C.; Lange, B.; Schepers, G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J. Atmos. Ocean. Technol. 2006, 23, 888–901. [Google Scholar] [CrossRef]
Country | 1995–2005 | 2006–2012 | 2013–2021 | Total |
---|---|---|---|---|
UK | 4 | 39 | 263 | 306 |
China | 6 | 214 | 220 | |
Denmark | 13 | 24 | 113 | 150 |
USA | 2 | 13 | 120 | 135 |
Germany | 2 | 20 | 91 | 113 |
Spain | 1 | 9 | 81 | 91 |
Netherland | 2 | 11 | 62 | 75 |
Taiwan | 8 | 56 | 64 | |
South Korea | 7 | 47 | 54 | |
Norway | 4 | 45 | 49 | |
Australia | 1 | 41 | 42 | |
France | 1 | 41 | 42 | |
Belgium | 1 | 34 | 35 | |
Canada | 3 | 32 | 35 | |
Ireland | 1 | 32 | 33 | |
Italy | 1 | 24 | 25 | |
Sweden | 4 | 20 | 24 | |
Other | 11 | 208 | 219 | |
Sum | 24 | 164 | 1524 | 1712 |
Total Papers | 21 | 143 | 1052 | 1216 |
WOS Research Field | Energy Fuels | Engineering, Electrical Electronic | Green, Sustainable Science, Technology | Environmental Sciences | Oceanography | Marine Freshwater Biology | Ocean Engineering | Civil Engineering | Marine Engineering | Mechanical Engineering | Environmental Studies | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1995–2005 | 8 | 4 | 3 | 2 | 5 | 8 | 8 | 38 | ||||
2006–2012 | 43 | 38 | 14 | 11 | 8 | 7 | 6 | 3 | 12 | 6 | 148 | |
2013–2021 | 382 | 262 | 168 | 112 | 101 | 72 | 70 | 69 | 62 | 31 | 25 | 1354 |
Sum | 433 | 304 | 185 | 123 | 109 | 79 | 78 | 77 | 62 | 51 | 39 | 1540 |
WOS Research Field | Energy Fuels | Engineering, Electrical Electronic | Green, Sustainable Science, Technology | Environmental Sciences | Oceanography | Marine Freshwater Biology | Ocean Engineering | Civil Engineering | Marine Engineering | Mechanical Engineering | Environmental Studies | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
UK | 83 | 52 | 38 | 22 | 13 | 22 | 18 | 15 | 12 | 20 | 16 | 311 |
China | 81 | 28 | 28 | 21 | 14 | 21 | 15 | 11 | 11 | 17 | 6 | 253 |
Denmark | 46 | 37 | 20 | 7 | 6 | 8 | 12 | 6 | 7 | 4 | 6 | 159 |
USA | 43 | 36 | 14 | 6 | 7 | 6 | 12 | 6 | 7 | 1 | 2 | 140 |
Germany | 29 | 20 | 14 | 9 | 4 | 10 | 6 | 3 | 5 | 5 | 5 | 110 |
Spain | 28 | 21 | 18 | 4 | 9 | 4 | 13 | 11 | 5 | 4 | 5 | 122 |
Netherlands | 23 | 14 | 13 | 5 | 3 | 5 | 4 | 3 | 3 | 4 | 4 | 81 |
Taiwan | 15 | 20 | 5 | 2 | 4 | 2 | 6 | 5 | 3 | 2 | 4 | 68 |
South Korea | 15 | 12 | 11 | 4 | 4 | 3 | 4 | 5 | 1 | 4 | 3 | 66 |
Norway | 20 | 13 | 8 | 6 | 2 | 4 | 4 | 3 | 2 | 2 | 2 | 66 |
Australia | 19 | 4 | 6 | 4 | 3 | 4 | 5 | 1 | 2 | 1 | 1 | 50 |
France | 15 | 11 | 8 | 4 | 1 | 4 | 1 | 3 | 1 | 1 | 49 | |
Belgium | 12 | 9 | 6 | 4 | 3 | 1 | 1 | 1 | 37 | |||
Canada | 17 | 8 | 6 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 40 | |
Ireland | 10 | 7 | 5 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 42 |
Italy | 7 | 4 | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 23 | |
Sweden | 5 | 7 | 2 | 3 | 3 | 20 | ||||||
Sum | 468 | 303 | 205 | 106 | 74 | 103 | 106 | 77 | 63 | 70 | 62 | 1637 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Su, N.-J. Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis. J. Mar. Sci. Eng. 2022, 10, 1339. https://doi.org/10.3390/jmse10101339
Chen C-H, Su N-J. Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis. Journal of Marine Science and Engineering. 2022; 10(10):1339. https://doi.org/10.3390/jmse10101339
Chicago/Turabian StyleChen, Chia-Hsiang, and Nan-Jay Su. 2022. "Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis" Journal of Marine Science and Engineering 10, no. 10: 1339. https://doi.org/10.3390/jmse10101339
APA StyleChen, C.-H., & Su, N.-J. (2022). Global Trends and Characteristics of Offshore Wind Farm Research over the Past Three Decades: A Bibliometric Analysis. Journal of Marine Science and Engineering, 10(10), 1339. https://doi.org/10.3390/jmse10101339