Identification and Expression Analysis of Two allene oxide cyclase (AOC) Genes in Watermelon
1
Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
2
Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
3
Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
*
Authors to whom correspondence should be addressed.
Agriculture 2019, 9(10), 225; https://doi.org/10.3390/agriculture9100225
Received: 2 August 2019 / Revised: 30 September 2019 / Accepted: 14 October 2019 / Published: 17 October 2019
(This article belongs to the Special Issue Vegetable Crops Breeding)
Allene oxide cyclase (AOC, EC 5.3.99.6) catalyzes the most important step in the jasmonic acid (JA) biosynthetic pathway and mediates plant defense response to a wide range of biotic and abiotic stresses. In this study, two AOC genes were identified from watermelon. Sequence analysis revealed that each of ClAOC1 and ClAOC2 contained an allene oxide cyclase domain and comprised eight highly conserved β-strands, which are the typical characteristics of AOC proteins. Phylogenetic analysis showed that ClAOC1 and ClAOC2 were clustered together with AOCs from dicotyledon, with the closest relationships with JcAOC from Jatropha curcas and Ljaoc1 from Lotus japonicus. Different intron numbers were observed in ClAOC1 and ClAOC2, which may result in their functional divergence. qRT-PCR analysis revealed that ClAOC1 and ClAOC2 have specific and complex expression patterns in multiple organs and under hormone treatments. Both ClAOC1 and ClAOC2 displayed the highest transcriptional levels in stem apex and fruit and exhibited relatively lower expression in stem. JA, salicylic acid (SA), and ethylene (ET) could enhance the expression of ClAOC1 and ClAOC2, particularly that of ClAOC2. Red light could induce the expression of ClAOC2 in root-knot nematode infected leaf and root of watermelon, indicating that ClAOC2 might play a primary role in red light-induced resistance against root-knot nematodes through JA signal pathway. These findings provide important information for further research on AOC genes in watermelon.
View Full-Text
Keywords:
watermelon; allene oxide cyclase (AOC); jasmonic acid (JA); expression profile; root-knot nematode
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
MDPI and ACS Style
Li, J.; Guang, Y.; Yang, Y.; Zhou, Y. Identification and Expression Analysis of Two allene oxide cyclase (AOC) Genes in Watermelon. Agriculture 2019, 9, 225.
Show more citation formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
- Supplementary File 1:
ZIP-Document (ZIP, 15 KB)