Rice Cultivation and Greenhouse Gas Emissions: A Review and Conceptual Framework with Reference to Ghana
Abstract
:1. Introduction
2. Yield-Scaled Global Warming Potential (Greenhouse Gas Intensity)
3. Rice Production in Africa and Greenhouse Gas Emissions
3.1. Current Research in Africa
3.2. Research in Other Continents
4. Rice Cultivar (Variety) Impact on GHG Emissions
5. Rice Production Management Practices Influence on GHG Emissions
5.1. Organic versus Conventional
5.2. Optimization of Fertilizer Application
5.3. Water Management and Research Efforts
6. Conceptual Framework
- sustainably increasing agricultural productivity in order to support equitable increases in farm incomes, food security, and development;
- adapting and building resilience of agricultural and food security systems to climate change at multiple levels;
- reducing greenhouse gas emissions from agriculture (including crops, livestock, and fisheries).
7. Gaps Identified in Literature
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Consultative Group on International Agricultural Research. Climate Change, Agriculture and Food Security; Consultative Group on International Agricultural Research (CGIAR): Montpellier, France, 2015. [Google Scholar]
- Hickman, J.E.; Palm, C.; Mutuo, P.; Melillo, J.; Tang, J. Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya. Nutr. Cycl. Agroecosyst. 2014, 100, 177–187. [Google Scholar] [CrossRef]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Cazzolla Gatti, R.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M.; et al. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Bombelli, A.; Williams, M.; Piao, S.L.; Chave, J.; Ryan, C.M.; Henry, M.; Brender, P.; Valentini, R. The carbon balance of Africa: Synthesis of recent research studies. Philos. Trans. R. Soc. A 2011, 269, 2038–2057. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, A.; Henry, M.; Castaldi, S.; Adu-Bredu, S.; Arneth, A.; de Grandcourt, A.; Grieco, E.; Kutsch, W.L.; Lehsten, V.; Rasile, A.; et al. An outlook on the Sub-Saharan Africa carbon balance. Biogeosciences 2009, 6, 2193–2205. [Google Scholar] [CrossRef]
- Palm, C.A.; Smukler, S.M.; Sullivan, C.C.; Mutuo, P.K.; Nyadzi, G.I.; Walsh, M.G. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 19661–19666. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Biogeosciences 2005, 11, 6223–6236. [Google Scholar] [CrossRef]
- Babu, Y.; Jagadeesh, L.; Frolking, C.; Nayak, S.; Datta, D.R.; Adhya, T.K. Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model. Field Valid. Sensit. Anal. 2005, 89, 1904–1912. [Google Scholar]
- Linquist, B.; Groenigen, K.J.V.; Adviento-Borbe, M.A. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Reiner, W.; Milkha, S.A. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 2000, 31, 20–29. [Google Scholar]
- Van Groenigen, K.J.; van Kessel, C.; Hungate, B.A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Chang. 2012, 3, 288–291. [Google Scholar] [CrossRef]
- Khosa, M.K.; Sidhu, B.S.; Benbi, D.K. Effect of organic materials and rice cultivars on methane emission from rice field. J. Environ. Biol. 2012, 31, 281–285. [Google Scholar]
- Yao, L.; Zheng, H.; Huang, H.; Liu, J.; He, H.; Tang, J. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system. Biogeosciences 2014, 11, 6221–6236. [Google Scholar] [CrossRef]
- Farmer, G.T.; Cook, J. Climate Change Science: A modern synthesis. In The Physical Climate, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Adviento-Borbe, M.A.; Hill, J.E.; Six, J.; van Kessel, C.; Linquist, B.A. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric. Ecosyst. Environ. 2013, 177, 10–20. [Google Scholar] [CrossRef]
- Tarlera, S.; Capurro, M.C.; Irisarri, P.; Scavino, A.F.; Cantou, G.; Roel, A. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system. Sci. Agric. 2016, 2, 43–50. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Biogeosciences 2014, 11, 3685–3693. [Google Scholar] [CrossRef] [Green Version]
- Eshun, J.F.; Apori, S.O.; Wereko, E. Greenhouse Gaseous Emission and Energy Analysis in Rice Production Systems in Ghana. SSA 2013, 21, 119–125. [Google Scholar]
- Das, K.; Baruah, K.K. Association between contrasting methane emissions of two rice (Oryza sativa L.) cultivars from the irrigated agroecosystem of Northeast India and their growth and photosynthetic characteristics. Acta Physiol. Plant. 2008, 30, 569–578. [Google Scholar] [CrossRef]
- Kim, D.-G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further studies. Biogeosci. Discuss. 2015, 12, 16479–16526. [Google Scholar] [CrossRef]
- Farag, A.A.; Radwan, H.A.; Abdrabbo, M.A.A.; Heggi, M.A.M.; McCarl, B.A. Carbon footprint for paddy rice production in Egypt. Nat. Sci. 2013, 11, 36–45. [Google Scholar]
- Kaba, J.S. Climate change impact on agriculture in Talensi district of Ghana: A case study of Baare and Datuku communities. Int. J. Life Sci. Res. 2015, 3, 15–22. [Google Scholar]
- Scheer, C.; Wassmann, R.; Kienzler, K.; Ibragimov, N.; Lamers, J.; Martius, P.; Christopher, A. Methane and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas in the Aral Sea Basin. Glob. Chang. Biol. 2008, 14, 2454–2468. [Google Scholar] [CrossRef]
- Meryl, R.; Metzel, R.; Ngonidzashe, C.; Proyuth, L.; Nyamadzawo, G.; Duong, V.; de Neergaard, Q.; Oelofse, A.; Wollenberg, M.; Keller, E.; et al. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture. Sci. Rep. 2016, 6, 26279. [Google Scholar]
- Zhang, Y.; Wang, Y.Y.; Su, S.L.; Li, C.S. Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences 2011, 8, 1225–1235. [Google Scholar] [CrossRef]
- Weller, S.; Kraus, D.; Ayag, K.R.P.; Wassmann, R.; Alberto, C.R.; Butterbach-Bahl, K.; Kiese, R. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 2014, 101, 37–53. [Google Scholar] [CrossRef]
- Baruah, K.K.; Gogoi, B.; Gogoi, P. Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2010, 16, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wassmann, R.; Neue, H.U. Response of methanogenesis in anaerobic rice soils to exogenous substrates. Soil Biol. Biochem. 2000, 32, 1683–1690. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Wassmann, R.; Bueno, C.; Rennenberg, H. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 2001, 230, 77–86. [Google Scholar] [CrossRef]
- Ghosh, S.; Jain, M.C.; Sinha, S. Estimates of global methane production from rice paddies based on substrate requirement. Curr. Sci. 1995, 69, 937–939. [Google Scholar]
- Butterbach-Bahl, K.; Papen, H.; Rennenberg, H. Impact of gas trans-port through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 1997, 20, 1175–1183. [Google Scholar] [CrossRef]
- Kesheng, S.; Zhen, L. Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing. Nutr. Cycl. Agroecosys. 1997, 49, 139–146. [Google Scholar] [CrossRef]
- Baruah, K.K.; Gogoi, N.; Gogoi, B.; Goswami, S.; Barman, B.; Gupta, P.K. Plant and soil factors associated with methane emission from irrigated rice eosystem of Assam. In Non-CO2 Greenhouse Gases Scientific Understanding, Control Options and Policy Aspects; Ham, J.V., Baede, A.P.M., Guicherit, R., Williams-Jacobse, J.G.F.M., Eds.; Millpress: Rotterdam, The Netherlands, 2002; pp. 101–116. [Google Scholar]
- Mitra, S.; Jain, M.C.; Kumar, S.; Bandyopadhya, S.K.; Kalra, N. Effect of rice cultivars on methane emission. Agric. Ecosyst. Environ. 1999, 73, 177–183. [Google Scholar] [CrossRef]
- Shalini, S.; Kumar, S.; Jain, M.C. Methane emission from two Indian soils planted with different rice cultivars. Biol. Fert. Soils 1997, 25, 285–289. [Google Scholar]
- Adhya, T.K.; Rath, A.K.; Gupta, P.K.; Rao, V.R.; Das, S.N.; Parida, K.M.; Parashar, D.C.; Sethunathan, N. Methane emission from flooded rice fields under irrigated conditions. Biol. Fert. Soils 1994, 18, 245–248. [Google Scholar] [CrossRef]
- Gogoi, N.; Baruah, K.K.; Gupta, P.K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 2008, 28, 181–186. [Google Scholar] [CrossRef]
- Wassmann, R.; Lantin, R.S.; Neue, H.U.; Buendia, L.V.; Corton, T.M.; Lu, Y. Characterization of methane emissions from rice fields in Asia. III Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 2000, 58, 23–36. [Google Scholar] [CrossRef]
- Dubey, S.K. Methane emission and rice agriculture. Curr. Sci. 2001, 81, 345–346. [Google Scholar]
- Anastasi, C.; Dowding, M.; Simpson, V.J. Future CH4 Emissions from Rice Production. J. Geophys. Res. 1992, 97, 7521–7525. [Google Scholar] [CrossRef]
- Yagi, K.; Tsuruta, H.; Minami, K. Possible options for mitigating methane emission from rice cultivation. Nutr. Cycl. Agroecosyst. 1997, 49, 213–220. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, S.; Li, Y.; Zhuang, H.; Li, C.; Liu, C. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Sci. Total Environ. 2014, 472, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Sampanpanish, P. Effect of Organic Fertilizer Use in Rice Paddy to Reduce Greenhouse Gases. Int. Conf. Environ. Agric. Eng. 2012, 37, 79–85. [Google Scholar]
- Lin, H.-C.; Fukushima, Y. Rice cultivation methods and their sustainability aspects: Organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability 2016, 8, 529. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2014, 235–236, 355–362. [Google Scholar] [CrossRef]
- Nungkat, P.; Kusuma, Z.H.E. Effects of organic matter application on methane emission from paddy fields adopting organic farming. J. Degraded Min. Lands Manag. 2015, 2, 303–312. [Google Scholar]
- Dubey, S.K. Microbial ecology of methane emission in rice agroecosystem: A review. Appl. Ecol. Environ. Res. 2005, 3, 1–27. [Google Scholar] [CrossRef]
- Wang, Z.P.; Delaune, R.D.; Masscheleyn, P.B.; Patrick, W.H., Jr. Soil redox and pH effects on methane production in a flooded rice soils. Soil Sci. Soc. Am. J. 1993, 57, 382–385. [Google Scholar] [CrossRef]
- Gogoi, B. Seasonal and Temporal Changes in Nitrous Oxide Emission with Fertilizer Application in Rice Ecosystem of North Bank Plain Agroclimatic Zone of North East India. Int. J. Environ. Monit. Anal. 2014, 2, 289–290. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, Z.; Liu, Y.; Xu, X.; Wang, J.; Zhang, H.; Xiong, Z. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Linquist, B.; Groenigen, J.W.; Adviento-borbe, M.A. An agronomic assessment of greenhouse gas emissions from major cereal crops. Field Crops Res. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Z.; Liu, Y.; Xu, X.; Wang, J.; Zhang, H.; Xiong, Z. Net global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency: A 5-year field study. Biogeosci. Discuss. 2015, 12, 18883–18911. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, K.Y.; Tao, Y.; Li, Z.G.; Zhang, G.S.; Li, S.L.; Chen, F. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles. PLoS ONE 2013, 8, e56562. [Google Scholar] [CrossRef] [PubMed]
- Pathak, H.; Bhatia, A.; Prasad, S.; Singh, S.; Kumar, S.; Jain, M.C.; Kumar, U. Emission of nitrous oxide from rice–wheat systems of Indo-Gangetic Plains of India. Environ. Monit. Assess. 2002, 77, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Schutz, H.; Holzapfel-Pschorn, A.; Conrad, R.; Rennenberg, H.; Seiler, W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 1989, 94, 16405–16416. [Google Scholar] [CrossRef]
- Setyanto, P.; Makarim, A.K.; Fagi, A.M.; Wassman, R.; Buendia, L.V. Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutr. Cycl. Agroecosys. 2000, 58, 85–93. [Google Scholar] [CrossRef]
- Smith, C.J.; Brandon, M.; Patrick, W.H., Jr. Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Sci. Plant Nutr. 1982, 28, 161–171. [Google Scholar] [CrossRef]
- Wang, J.; Sainju, U.M.; Barsotti, J.L. Residue Placement and Rate, Crop Species, and Nitrogen Fertilization Effects on Soil Greenhouse Gas Emissions. J. Environ. Protect. 2012, 3, 1238–1250. [Google Scholar] [CrossRef]
Area | Identified Gaps |
---|---|
Emissions Estimation | Use of emission factors calibrated using temperate conditions which do not suit tropical conditions. Insufficient measurements for the development of a localized emissions database for continuous research on rice induced emissions in Ghana. |
Location | Majority of studies on rice induced GHG emissions carried out in Asia with little to no input from African rice production. |
Crops | Unavailability of emission data collected in situ from paddy rice fields in Ghana. |
Location | Emission | Emission Level | Reference | |
---|---|---|---|---|
1 | India | CH4 | 18.63 g/m2 | [44] |
N2O | 14.33 g/m2 | |||
2 | China | N2O | 23.10 a, 40.10 b, 71.10 c mg/m2 | [55] |
3 | China | CO2 | 0.45–8.62 µmol∙m−2∙s−1 | [56] |
4 | China | N2O | 0.089–0.21 kg·N·ha−1 | [15] |
5 | CH4 | 34.6–51.7 kg·Cha−1·year−1 | ||
6 | China | N2O | 0.11–0.68 kg·N·ha−1 | [55] |
CH4 | 135–467 kg·Cha−1 | |||
7 | India | N2O | 1.09–1.64 kg·Cha−1 | [57] |
8 | Philippines | CH4 | 75.55–86.81 kg·CH4-C·ha−1·s−1 | [30] |
N2O | 0.64–0.0.90 kg N2O-N·ha−1·season−1 | |||
9 | Italy | CH4 | 0.16–0.38 g·CH4·m2·day−1 | [58] |
10 | Indonesia | CH4 | 19–123 mg·CH4·m−2·day−1 | [59] |
11 | Indonesia | CH4 | −399.63 to 459.94 kg∙CH4/ha | [52] |
12 | USA | N2O | 90–171 g·N·ha−1 | [60] |
13 | USA | CO2 | 2.4–21.1 kg·C·ha−1·day−1 | [61] |
N2O | 0.20–6.7 g·N·ha−1·day−1 | |||
CH4 | −0.97 to 0.04 g·C·ha−1·day−1 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, K.K.; Obeng, G.Y.; Mensah, E. Rice Cultivation and Greenhouse Gas Emissions: A Review and Conceptual Framework with Reference to Ghana. Agriculture 2017, 7, 7. https://doi.org/10.3390/agriculture7010007
Boateng KK, Obeng GY, Mensah E. Rice Cultivation and Greenhouse Gas Emissions: A Review and Conceptual Framework with Reference to Ghana. Agriculture. 2017; 7(1):7. https://doi.org/10.3390/agriculture7010007
Chicago/Turabian StyleBoateng, Kofi K., George Y. Obeng, and Ebenezer Mensah. 2017. "Rice Cultivation and Greenhouse Gas Emissions: A Review and Conceptual Framework with Reference to Ghana" Agriculture 7, no. 1: 7. https://doi.org/10.3390/agriculture7010007
APA StyleBoateng, K. K., Obeng, G. Y., & Mensah, E. (2017). Rice Cultivation and Greenhouse Gas Emissions: A Review and Conceptual Framework with Reference to Ghana. Agriculture, 7(1), 7. https://doi.org/10.3390/agriculture7010007